-
Previous Article
Maximizing entropy of cycles on trees
- DCDS Home
- This Issue
- Next Article
The reversibility problem for quasi-homogeneous dynamical systems
1. | Department of Mathematics, University of Huelva, 21071-Huelva, Spain, Spain |
2. | Department of Applied Mathematics II, University of Seville, 41092-Seville, Spain |
References:
[1] |
A. Algaba, E. Freire and E Gamero, Isochronicity via normal form,, Qualitative Theory of Dynamical Systems, 1 (2000), 133.
doi: 10.1007/BF02969475. |
[2] |
A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problem for quasi-homogeneous polynomial systems,, Nonlinear Analysis: Theory, 72 (2010), 1726.
doi: 10.1016/j.na.2009.09.012. |
[3] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 395.
doi: 10.1088/0951-7715/22/2/009. |
[4] |
A. Algaba, C. García and M. Reyes, Integrability of two-dimensional quasi-homogeneous polynomial differential systems,, Rocky Mountain Journal of Mathematics, 41 (2011), 1.
doi: 10.1216/RMJ-2011-41-1-1. |
[5] |
A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields,, Nonlinear Analysis: Theory, 73 (2010), 510.
doi: 10.1016/j.na.2010.03.046. |
[6] |
M. Berthier, D. Cerveau and A. Lins Neto, Sur les feuilletages analytiques réels et le problème du centre,, Journal of Differential Equations, 131 (1996), 244.
doi: 10.1006/jdeq.1996.0163. |
[7] |
M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents,, Annales de l'Institut Fourier, 44 (1994), 465.
|
[8] |
A. D. Bruno, "Local Methods in Nonlinear Differential Equations,", Springer, (1989).
doi: 10.1007/978-3-642-61314-2. |
[9] |
A. D. Bruno, Analysis of the Euler-Poisson equations by methods of power geometry and normal form,, Journal of Applied Mathematics and Mechanics, 71 (2007), 168.
doi: 10.1016/j.jappmathmech.2007.06.002. |
[10] |
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory and Dynamical Systems, 23 (2003), 417.
doi: 10.1017/S014338570200127X. |
[11] |
S. N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcations of Planar Vector Fields,", Cambridge University Press, (1994).
doi: 10.1017/CBO9780511665639. |
[12] |
J. Guckenheimer and P. J. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer, (1983).
|
[13] |
J. S. W. Lamb and J. A. G. Roberts, Time-reversal symmetry in dynamical systems: A survey,, Physica D. Nonlinear Phenomena, 112 (1998), 1.
doi: 10.1016/S0167-2789(97)00199-1. |
[14] |
J. Llibre and J. C. Medrado, Darboux integrability and reversible quadratic vector fields,, Rocky Mountain Journal of Mathematics, 35 (2005), 1999.
doi: 10.1216/rmjm/1181069627. |
[15] |
M. V. Matveyev, Lyapunov stability of equilibrium states of reversibles systems,, Mathematical Notes, 57 (1993), 63. Google Scholar |
[16] |
M. V. Matveyev, Reversible systems with first integrals,, Physica D, 112 (1998), 148.
doi: 10.1016/S0167-2789(97)00208-X. |
[17] |
D. Montgomery and L. Zippin, "Topological Transformation Groups,", Interscience Publ., (1955).
|
[18] |
H. Poincaré, "Mémoire sur les Courbes Définies par les Équations Différentielles,", Oeuvres de Henri Poincaré, (1951). Google Scholar |
[19] |
E. Strozyna and H. Zoladek, The anallytic and formal normal form for the nilpotent singularity,, Journal of Differential Equations, 179 (2002), 479.
doi: 10.1006/jdeq.2001.4043. |
[20] |
M. A. Teixeira and J. Yang, The center-focus problem and reversibility,, Journal of Differential Equations, 174 (2001), 237.
doi: 10.1006/jdeq.2000.3931. |
[21] |
V. N. Tkhai, The reversibility of mechanical systems,, Journal of Applied Mathematics and Mechanics, 55 (1991), 461.
doi: 10.1016/0021-8928(91)90007-H. |
[22] |
H. Żoładek, The classification of reversible cubic systems with center,, Topological Methods in Nonlinear Analysis, 4 (1994), 79.
|
[23] |
H. Żoładek and J. Llibre, The Poincaré center problem,, Journal of Dynamical and Control Systems, 14 (2008), 505.
doi: 10.1007/s10883-008-9049-5. |
show all references
References:
[1] |
A. Algaba, E. Freire and E Gamero, Isochronicity via normal form,, Qualitative Theory of Dynamical Systems, 1 (2000), 133.
doi: 10.1007/BF02969475. |
[2] |
A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problem for quasi-homogeneous polynomial systems,, Nonlinear Analysis: Theory, 72 (2010), 1726.
doi: 10.1016/j.na.2009.09.012. |
[3] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 395.
doi: 10.1088/0951-7715/22/2/009. |
[4] |
A. Algaba, C. García and M. Reyes, Integrability of two-dimensional quasi-homogeneous polynomial differential systems,, Rocky Mountain Journal of Mathematics, 41 (2011), 1.
doi: 10.1216/RMJ-2011-41-1-1. |
[5] |
A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields,, Nonlinear Analysis: Theory, 73 (2010), 510.
doi: 10.1016/j.na.2010.03.046. |
[6] |
M. Berthier, D. Cerveau and A. Lins Neto, Sur les feuilletages analytiques réels et le problème du centre,, Journal of Differential Equations, 131 (1996), 244.
doi: 10.1006/jdeq.1996.0163. |
[7] |
M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents,, Annales de l'Institut Fourier, 44 (1994), 465.
|
[8] |
A. D. Bruno, "Local Methods in Nonlinear Differential Equations,", Springer, (1989).
doi: 10.1007/978-3-642-61314-2. |
[9] |
A. D. Bruno, Analysis of the Euler-Poisson equations by methods of power geometry and normal form,, Journal of Applied Mathematics and Mechanics, 71 (2007), 168.
doi: 10.1016/j.jappmathmech.2007.06.002. |
[10] |
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory and Dynamical Systems, 23 (2003), 417.
doi: 10.1017/S014338570200127X. |
[11] |
S. N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcations of Planar Vector Fields,", Cambridge University Press, (1994).
doi: 10.1017/CBO9780511665639. |
[12] |
J. Guckenheimer and P. J. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer, (1983).
|
[13] |
J. S. W. Lamb and J. A. G. Roberts, Time-reversal symmetry in dynamical systems: A survey,, Physica D. Nonlinear Phenomena, 112 (1998), 1.
doi: 10.1016/S0167-2789(97)00199-1. |
[14] |
J. Llibre and J. C. Medrado, Darboux integrability and reversible quadratic vector fields,, Rocky Mountain Journal of Mathematics, 35 (2005), 1999.
doi: 10.1216/rmjm/1181069627. |
[15] |
M. V. Matveyev, Lyapunov stability of equilibrium states of reversibles systems,, Mathematical Notes, 57 (1993), 63. Google Scholar |
[16] |
M. V. Matveyev, Reversible systems with first integrals,, Physica D, 112 (1998), 148.
doi: 10.1016/S0167-2789(97)00208-X. |
[17] |
D. Montgomery and L. Zippin, "Topological Transformation Groups,", Interscience Publ., (1955).
|
[18] |
H. Poincaré, "Mémoire sur les Courbes Définies par les Équations Différentielles,", Oeuvres de Henri Poincaré, (1951). Google Scholar |
[19] |
E. Strozyna and H. Zoladek, The anallytic and formal normal form for the nilpotent singularity,, Journal of Differential Equations, 179 (2002), 479.
doi: 10.1006/jdeq.2001.4043. |
[20] |
M. A. Teixeira and J. Yang, The center-focus problem and reversibility,, Journal of Differential Equations, 174 (2001), 237.
doi: 10.1006/jdeq.2000.3931. |
[21] |
V. N. Tkhai, The reversibility of mechanical systems,, Journal of Applied Mathematics and Mechanics, 55 (1991), 461.
doi: 10.1016/0021-8928(91)90007-H. |
[22] |
H. Żoładek, The classification of reversible cubic systems with center,, Topological Methods in Nonlinear Analysis, 4 (1994), 79.
|
[23] |
H. Żoładek and J. Llibre, The Poincaré center problem,, Journal of Dynamical and Control Systems, 14 (2008), 505.
doi: 10.1007/s10883-008-9049-5. |
[1] |
Laurent Bourgeois, Jérémi Dardé. A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Problems & Imaging, 2010, 4 (3) : 351-377. doi: 10.3934/ipi.2010.4.351 |
[2] |
Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015 |
[3] |
Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082 |
[4] |
Charles-Michel Marle. A property of conformally Hamiltonian vector fields; Application to the Kepler problem. Journal of Geometric Mechanics, 2012, 4 (2) : 181-206. doi: 10.3934/jgm.2012.4.181 |
[5] |
Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177 |
[6] |
Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239 |
[7] |
Giulia Cavagnari, Antonio Marigonda. Measure-theoretic Lie brackets for nonsmooth vector fields. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 845-864. doi: 10.3934/dcdss.2018052 |
[8] |
Igor G. Vladimirov. The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 575-600. doi: 10.3934/dcdsb.2013.18.575 |
[9] |
Luis Barreira, Claudia Valls. Reversibility and equivariance in center manifolds of nonautonomous dynamics. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 677-699. doi: 10.3934/dcds.2007.18.677 |
[10] |
Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791 |
[11] |
Marco Castrillón López, Pedro Luis García Pérez. The problem of Lagrange on principal bundles under a subgroup of symmetries. Journal of Geometric Mechanics, 2019, 11 (4) : 539-552. doi: 10.3934/jgm.2019026 |
[12] |
Rafael Ortega, Andrés Rivera. Global bifurcations from the center of mass in the Sitnikov problem. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 719-732. doi: 10.3934/dcdsb.2010.14.719 |
[13] |
Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873 |
[14] |
Armengol Gasull, Jaume Giné, Joan Torregrosa. Center problem for systems with two monomial nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 577-598. doi: 10.3934/cpaa.2016.15.577 |
[15] |
Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809 |
[16] |
Pierpaolo Esposito, Maristella Petralla. Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1935-1957. doi: 10.3934/cpaa.2012.11.1935 |
[17] |
Fabio Scalco Dias, Luis Fernando Mello. The center--focus problem and small amplitude limit cycles in rigid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1627-1637. doi: 10.3934/dcds.2012.32.1627 |
[18] |
Roberto Castelli, Susanna Terracini. On the regularization of the collision solutions of the one-center problem with weak forces. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1197-1218. doi: 10.3934/dcds.2011.31.1197 |
[19] |
Guowei Yu. Periodic solutions of the planar N-center problem with topological constraints. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5131-5162. doi: 10.3934/dcds.2016023 |
[20] |
Isaac A. García, Claudia Valls. The three-dimensional center problem for the zero-Hopf singularity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2027-2046. doi: 10.3934/dcds.2016.36.2027 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]