August  2013, 33(8): 3277-3287. doi: 10.3934/dcds.2013.33.3277

Toeplitz kneading sequences and adding machines

1. 

Department of Mathematics and Statistics, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, United States

Received  May 2012 Revised  November 2012 Published  January 2013

In this paper we provide a characterization for a shift maximal sequence of 1's and 0's to be the kneading sequence for a unimodal map $f$ with $f|_{\omega(c)}$ topologically conjugate to an adding machine, where $c$ is the turning point of $f$. We show that the unimodal map $f$ has an embedded adding machine if and only if $\mathcal{K}(f)$ is a one-sided, non-periodic Toeplitz sequence with the finite time containment property. We then show the existence of unimodal maps with Toeplitz kneading sequences that do not have the finite time containment property.
Citation: Lori Alvin. Toeplitz kneading sequences and adding machines. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3277-3287. doi: 10.3934/dcds.2013.33.3277
References:
[1]

J. Difference Eq. and Appl., 18 (2012), 657-674. doi: 10.1080/10236198.2011.608066.  Google Scholar

[2]

Fund. Math., 209 (2010), 81-93. doi: 10.4064/fm209-1-6.  Google Scholar

[3]

J. Math. Anal. Appl., 115 (1986), 305-362 doi: 10.1016/0022-247X(86)90001-6.  Google Scholar

[4]

Topology Appl., 140 (2004), 151-161. doi: 10.1016/j.topol.2003.07.006.  Google Scholar

[5]

Ergod. Th. & Dynam. Sys., 26 (2006), 673-682 . doi: 10.1017/S0143385705000635.  Google Scholar

[6]

Cambridge University Press, 2004.  Google Scholar

[7]

Birkhauser, 1980.  Google Scholar

[8]

Commun. Math. Phys., 127 (1990), 319-337.  Google Scholar

[9]

Topology Appl., 156 (2009), 2735-2746. doi: 10.1016/j.topol.2008.11.018.  Google Scholar

[10]

Springer Verlag, 1993.  Google Scholar

[11]

Z. Wahrsch. Verw. Gebiete, 67 (1984), 95-107. doi: 10.1007/BF00534085.  Google Scholar

show all references

References:
[1]

J. Difference Eq. and Appl., 18 (2012), 657-674. doi: 10.1080/10236198.2011.608066.  Google Scholar

[2]

Fund. Math., 209 (2010), 81-93. doi: 10.4064/fm209-1-6.  Google Scholar

[3]

J. Math. Anal. Appl., 115 (1986), 305-362 doi: 10.1016/0022-247X(86)90001-6.  Google Scholar

[4]

Topology Appl., 140 (2004), 151-161. doi: 10.1016/j.topol.2003.07.006.  Google Scholar

[5]

Ergod. Th. & Dynam. Sys., 26 (2006), 673-682 . doi: 10.1017/S0143385705000635.  Google Scholar

[6]

Cambridge University Press, 2004.  Google Scholar

[7]

Birkhauser, 1980.  Google Scholar

[8]

Commun. Math. Phys., 127 (1990), 319-337.  Google Scholar

[9]

Topology Appl., 156 (2009), 2735-2746. doi: 10.1016/j.topol.2008.11.018.  Google Scholar

[10]

Springer Verlag, 1993.  Google Scholar

[11]

Z. Wahrsch. Verw. Gebiete, 67 (1984), 95-107. doi: 10.1007/BF00534085.  Google Scholar

[1]

Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025

[2]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2809-2828. doi: 10.3934/dcds.2020386

[3]

Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel. Generalised Manin transformations and QRT maps. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021009

[4]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[5]

Daniel Amin, Mikael Vejdemo-Johansson. Intrinsic disease maps using persistent cohomology. Foundations of Data Science, 2021  doi: 10.3934/fods.2021008

[6]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[7]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021067

[8]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]