-
Previous Article
Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations
- DCDS Home
- This Issue
-
Next Article
Maximizing entropy of cycles on trees
Toeplitz kneading sequences and adding machines
1. | Department of Mathematics and Statistics, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, United States |
References:
[1] |
L. Alvin, The strange star product, J. Difference Eq. and Appl., 18 (2012), 657-674.
doi: 10.1080/10236198.2011.608066. |
[2] |
L. Alvin and K. Brucks, Adding machines, endpoints, and inverse limit spaces, Fund. Math., 209 (2010), 81-93.
doi: 10.4064/fm209-1-6. |
[3] |
W. A. Beyer, R. D. Mauldin and P. R. Stein, Shift maximal sequences in function iteration: Existence, uniqueness, and multiplicity, J. Math. Anal. Appl., 115 (1986), 305-362
doi: 10.1016/0022-247X(86)90001-6. |
[4] |
L. Block and J. Keesling, A characterization of adding machines maps, Topology Appl., 140 (2004), 151-161.
doi: 10.1016/j.topol.2003.07.006. |
[5] |
L. Block, J. Keesling and M. Misiurewicz, Strange adding machines, Ergod. Th. & Dynam. Sys., 26 (2006), 673-682 .
doi: 10.1017/S0143385705000635. |
[6] |
K. M. Brucks and H. Bruin, "Topics From One-Dimensional Dynamics," Cambridge University Press, 2004. |
[7] |
P. Collet and J-P. Eckmann, "Iterated Maps on the Interval as Dynamical Systems," Birkhauser, 1980. |
[8] |
F. Hofbauer and G. Keller, Quadratic maps without asymptotic measure, Commun. Math. Phys., 127 (1990), 319-337. |
[9] |
L. Jones, Kneading sequences of strange adding machines, Topology Appl., 156 (2009), 2735-2746.
doi: 10.1016/j.topol.2008.11.018. |
[10] |
W. de Melo and S. van Strien, "One-Dimensional Dynamics," Springer Verlag, 1993. |
[11] |
S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, 67 (1984), 95-107.
doi: 10.1007/BF00534085. |
show all references
References:
[1] |
L. Alvin, The strange star product, J. Difference Eq. and Appl., 18 (2012), 657-674.
doi: 10.1080/10236198.2011.608066. |
[2] |
L. Alvin and K. Brucks, Adding machines, endpoints, and inverse limit spaces, Fund. Math., 209 (2010), 81-93.
doi: 10.4064/fm209-1-6. |
[3] |
W. A. Beyer, R. D. Mauldin and P. R. Stein, Shift maximal sequences in function iteration: Existence, uniqueness, and multiplicity, J. Math. Anal. Appl., 115 (1986), 305-362
doi: 10.1016/0022-247X(86)90001-6. |
[4] |
L. Block and J. Keesling, A characterization of adding machines maps, Topology Appl., 140 (2004), 151-161.
doi: 10.1016/j.topol.2003.07.006. |
[5] |
L. Block, J. Keesling and M. Misiurewicz, Strange adding machines, Ergod. Th. & Dynam. Sys., 26 (2006), 673-682 .
doi: 10.1017/S0143385705000635. |
[6] |
K. M. Brucks and H. Bruin, "Topics From One-Dimensional Dynamics," Cambridge University Press, 2004. |
[7] |
P. Collet and J-P. Eckmann, "Iterated Maps on the Interval as Dynamical Systems," Birkhauser, 1980. |
[8] |
F. Hofbauer and G. Keller, Quadratic maps without asymptotic measure, Commun. Math. Phys., 127 (1990), 319-337. |
[9] |
L. Jones, Kneading sequences of strange adding machines, Topology Appl., 156 (2009), 2735-2746.
doi: 10.1016/j.topol.2008.11.018. |
[10] |
W. de Melo and S. van Strien, "One-Dimensional Dynamics," Springer Verlag, 1993. |
[11] |
S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, 67 (1984), 95-107.
doi: 10.1007/BF00534085. |
[1] |
Claudio Bonanno, Carlo Carminati, Stefano Isola, Giulio Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1313-1332. doi: 10.3934/dcds.2013.33.1313 |
[2] |
Danilo Antonio Caprio. A class of adding machines and Julia sets. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5951-5970. doi: 10.3934/dcds.2016061 |
[3] |
Nuno Franco, Luís Silva. Genus and braid index associated to sequences of renormalizable Lorenz maps. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 565-586. doi: 10.3934/dcds.2012.32.565 |
[4] |
Mrinal Kanti Roychowdhury, Daniel J. Rudolph. Nearly continuous Kakutani equivalence of adding machines. Journal of Modern Dynamics, 2009, 3 (1) : 103-119. doi: 10.3934/jmd.2009.3.103 |
[5] |
E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics and Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010 |
[6] |
Frank Fiedler. Small Golay sequences. Advances in Mathematics of Communications, 2013, 7 (4) : 379-407. doi: 10.3934/amc.2013.7.379 |
[7] |
Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933 |
[8] |
Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617 |
[9] |
Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199 |
[10] |
Anna Gierzkiewicz, Klaudiusz Wójcik. Lefschetz sequences and detecting periodic points. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 81-100. doi: 10.3934/dcds.2012.32.81 |
[11] |
A. Gasull, Víctor Mañosa, Xavier Xarles. Rational periodic sequences for the Lyness recurrence. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 587-604. doi: 10.3934/dcds.2012.32.587 |
[12] |
Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, 2021, 29 (5) : 3031-3068. doi: 10.3934/era.2021025 |
[13] |
Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685 |
[14] |
Tanja Eisner, Jakub Konieczny. Automatic sequences as good weights for ergodic theorems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4087-4115. doi: 10.3934/dcds.2018178 |
[15] |
Yu Zheng, Li Peng, Teturo Kamae. Characterization of noncorrelated pattern sequences and correlation dimensions. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5085-5103. doi: 10.3934/dcds.2018223 |
[16] |
Jörg Härterich, Matthias Wolfrum. Describing a class of global attractors via symbol sequences. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 531-554. doi: 10.3934/dcds.2005.12.531 |
[17] |
Ruwu Xiao, Geng Li, Yuping Zhao. On the design of full duplex wireless system with chaotic sequences. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 783-793. doi: 10.3934/dcdss.2019052 |
[18] |
Jon Chaika, David Constantine. A quantitative shrinking target result on Sturmian sequences for rotations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5189-5204. doi: 10.3934/dcds.2018229 |
[19] |
Jiarong Peng, Xiangyong Zeng, Zhimin Sun. Finite length sequences with large nonlinear complexity. Advances in Mathematics of Communications, 2018, 12 (1) : 215-230. doi: 10.3934/amc.2018015 |
[20] |
Xiaoni Du, Chenhuang Wu, Wanyin Wei. An extension of binary threshold sequences from Fermat quotients. Advances in Mathematics of Communications, 2016, 10 (4) : 743-752. doi: 10.3934/amc.2016038 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]