August  2013, 33(8): 3289-3320. doi: 10.3934/dcds.2013.33.3289

Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations

1. 

Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal (Clermont-Ferrand 2), 63177 Aubière cedex

2. 

Centre de Mathématiques Appliquées, CNRS, Ecole Polytechnique, 91128 Palaiseau cedex

Received  May 2012 Revised  September 2012 Published  January 2013

In this paper we study the equations of flow and heat transfer in a magnetic fluid with internal rotations, when the fluid is subjected to the action of an external magnetic field. The system of equations is a combination of the Navier-Stokes equations, the magnetization relaxation equation of Bloch type, the magnetostatic equations and the temperature equation. We prove the local-in-time existence of the unique strong solution to the system equipped with initial and boundary conditions and establish a blow-up criterium for strong solutions. We then prove the global-in-time existence of strong solutions, under smallness assumptions on the initial data and the external magnetic field.
Citation: Youcef Amirat, Kamel Hamdache. Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3289-3320. doi: 10.3934/dcds.2013.33.3289
References:
[1]

J. Math. Anal. Appl., 353 (2009), 271-294. doi: 10.1016/j.jmaa.2008.11.084.  Google Scholar

[2]

Comm. Pure Appl. Anal., 11 (2012), 675-696. doi: 10.3934/cpaa.2012.11.675.  Google Scholar

[3]

J. Math. Fluid Mech., 14 (2012), 217-247. doi: 10.1007/s00021-011-0050-5.  Google Scholar

[4]

Acta Mech., 128 (1998), 39-47. Google Scholar

[5]

Walter de Gryuter and Co., Berlin-New York, 1997. Google Scholar

[6]

Differential and Integral Equations, 14 (2001), 213-229.  Google Scholar

[7]

J. Math. Pures Appl., 83 (2004), 243-275. doi: 10.1016/j.matpur.2003.11.004.  Google Scholar

[8]

Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835.  Google Scholar

[9]

J. Fluid Mech., 40 (1970), 753-767. Google Scholar

[10]

Springer Tracts in Natural Philosophy, 38, Springer Verlag, New-York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[11]

Springer Tracts in Natural Philosophy, 39, Springer-Verlag, New-York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[12]

J. Magn. Magn. Mater., 271 (2004), 63-73. Google Scholar

[13]

J. Reine Angew. Math., 330 (1982), 173-214.  Google Scholar

[14]

Journal of Functional Analysis, 102 (1991), 72-94. doi: 10.1016/0022-1236(91)90136-S.  Google Scholar

[15]

Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 197-202.  Google Scholar

[16]

Monographs and Studies in Mathematics, 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.  Google Scholar

[17]

Physical Review, E70 (2004), 1-12. Google Scholar

[18]

Z. Angew. Math. Phys., 62 (2011), 529-538. doi: 10.1007/s00033-010-0096-x.  Google Scholar

[19]

SIAM J. Math. Anal., 37 (2006), 1417-1434. doi: 10.1137/S0036141004442197.  Google Scholar

[20]

Second English edition, revised and enlarged, Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[21]

Translations Math. Monogr., 23, AMS, Providence, R.I., 1968.  Google Scholar

[22]

Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[23]

Oxford Lecture Series in Mathematics and its Applications, 3, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.  Google Scholar

[24]

Phys. Fluids, 7 (1964), 1927-1937.  Google Scholar

[25]

J. Phys. D: Appl. Phys., 36 (2003), R167-R181. Google Scholar

[26]

Dover Publications, Inc., 1997. Google Scholar

[27]

Lecture Notes in Physics (Springer-Verlag, Heidelberg), S. Odenbach Ed., 594 (2002), 61-84. Google Scholar

[28]

Sov. Phys. JETP, 44 (1972), 1291-1294. Google Scholar

[29]

J. Magn. and Magn. Mater., 252 (2002), 197-202. Google Scholar

[30]

Lecture Notes in Physics (Springer-Verlag, Heidelberg), S. Odenbach Ed., 594 (2002), 85-111. Google Scholar

[31]

in "Thermal Nonequilibrium Phenomena in Fluid Mixtures," Lecture Notes in Physics, Springer, Berlin, 584 (2002), 355-371. Google Scholar

[32]

J. of Magn. and Magn. Mater., 320 (2008), 316-324. Google Scholar

[33]

J. Math. Anal. Appl., 364 (2010), 424-436. doi: 10.1016/j.jmaa.2009.10.032.  Google Scholar

[34]

Publications Mathématiques d'Orsay 78, 13, Université de Paris-Sud, Département de Mathématique, Orsay, 1978.  Google Scholar

[35]

Reprint of the 1984 edition, AMS-Chelsea Publishing, Providence, RI, 2001.  Google Scholar

[36]

Z. angew. Math. Phys., 54 (2003), 551-565. doi: 10.1007/s00033-003-1100-5.  Google Scholar

[37]

Journal of Nanoparticle Research, 3 (2001), 73-78. Google Scholar

show all references

References:
[1]

J. Math. Anal. Appl., 353 (2009), 271-294. doi: 10.1016/j.jmaa.2008.11.084.  Google Scholar

[2]

Comm. Pure Appl. Anal., 11 (2012), 675-696. doi: 10.3934/cpaa.2012.11.675.  Google Scholar

[3]

J. Math. Fluid Mech., 14 (2012), 217-247. doi: 10.1007/s00021-011-0050-5.  Google Scholar

[4]

Acta Mech., 128 (1998), 39-47. Google Scholar

[5]

Walter de Gryuter and Co., Berlin-New York, 1997. Google Scholar

[6]

Differential and Integral Equations, 14 (2001), 213-229.  Google Scholar

[7]

J. Math. Pures Appl., 83 (2004), 243-275. doi: 10.1016/j.matpur.2003.11.004.  Google Scholar

[8]

Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835.  Google Scholar

[9]

J. Fluid Mech., 40 (1970), 753-767. Google Scholar

[10]

Springer Tracts in Natural Philosophy, 38, Springer Verlag, New-York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[11]

Springer Tracts in Natural Philosophy, 39, Springer-Verlag, New-York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[12]

J. Magn. Magn. Mater., 271 (2004), 63-73. Google Scholar

[13]

J. Reine Angew. Math., 330 (1982), 173-214.  Google Scholar

[14]

Journal of Functional Analysis, 102 (1991), 72-94. doi: 10.1016/0022-1236(91)90136-S.  Google Scholar

[15]

Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 197-202.  Google Scholar

[16]

Monographs and Studies in Mathematics, 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.  Google Scholar

[17]

Physical Review, E70 (2004), 1-12. Google Scholar

[18]

Z. Angew. Math. Phys., 62 (2011), 529-538. doi: 10.1007/s00033-010-0096-x.  Google Scholar

[19]

SIAM J. Math. Anal., 37 (2006), 1417-1434. doi: 10.1137/S0036141004442197.  Google Scholar

[20]

Second English edition, revised and enlarged, Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[21]

Translations Math. Monogr., 23, AMS, Providence, R.I., 1968.  Google Scholar

[22]

Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[23]

Oxford Lecture Series in Mathematics and its Applications, 3, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.  Google Scholar

[24]

Phys. Fluids, 7 (1964), 1927-1937.  Google Scholar

[25]

J. Phys. D: Appl. Phys., 36 (2003), R167-R181. Google Scholar

[26]

Dover Publications, Inc., 1997. Google Scholar

[27]

Lecture Notes in Physics (Springer-Verlag, Heidelberg), S. Odenbach Ed., 594 (2002), 61-84. Google Scholar

[28]

Sov. Phys. JETP, 44 (1972), 1291-1294. Google Scholar

[29]

J. Magn. and Magn. Mater., 252 (2002), 197-202. Google Scholar

[30]

Lecture Notes in Physics (Springer-Verlag, Heidelberg), S. Odenbach Ed., 594 (2002), 85-111. Google Scholar

[31]

in "Thermal Nonequilibrium Phenomena in Fluid Mixtures," Lecture Notes in Physics, Springer, Berlin, 584 (2002), 355-371. Google Scholar

[32]

J. of Magn. and Magn. Mater., 320 (2008), 316-324. Google Scholar

[33]

J. Math. Anal. Appl., 364 (2010), 424-436. doi: 10.1016/j.jmaa.2009.10.032.  Google Scholar

[34]

Publications Mathématiques d'Orsay 78, 13, Université de Paris-Sud, Département de Mathématique, Orsay, 1978.  Google Scholar

[35]

Reprint of the 1984 edition, AMS-Chelsea Publishing, Providence, RI, 2001.  Google Scholar

[36]

Z. angew. Math. Phys., 54 (2003), 551-565. doi: 10.1007/s00033-003-1100-5.  Google Scholar

[37]

Journal of Nanoparticle Research, 3 (2001), 73-78. Google Scholar

[1]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[4]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[5]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[6]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[7]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[8]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[9]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[10]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[11]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[12]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[13]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[14]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[15]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[16]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[17]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[18]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[19]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[20]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]