August  2013, 33(8): 3289-3320. doi: 10.3934/dcds.2013.33.3289

Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations

1. 

Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal (Clermont-Ferrand 2), 63177 Aubière cedex

2. 

Centre de Mathématiques Appliquées, CNRS, Ecole Polytechnique, 91128 Palaiseau cedex

Received  May 2012 Revised  September 2012 Published  January 2013

In this paper we study the equations of flow and heat transfer in a magnetic fluid with internal rotations, when the fluid is subjected to the action of an external magnetic field. The system of equations is a combination of the Navier-Stokes equations, the magnetization relaxation equation of Bloch type, the magnetostatic equations and the temperature equation. We prove the local-in-time existence of the unique strong solution to the system equipped with initial and boundary conditions and establish a blow-up criterium for strong solutions. We then prove the global-in-time existence of strong solutions, under smallness assumptions on the initial data and the external magnetic field.
Citation: Youcef Amirat, Kamel Hamdache. Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3289-3320. doi: 10.3934/dcds.2013.33.3289
References:
[1]

Y. Amirat and K. Hamdache, Strong solutions to the equations of a ferrofluid flow model,, J. Math. Anal. Appl., 353 (2009), 271.  doi: 10.1016/j.jmaa.2008.11.084.  Google Scholar

[2]

Y. Amirat and K. Hamdache, On a heated incompressible magnetic fluid model,, Comm. Pure Appl. Anal., 11 (2012), 675.  doi: 10.3934/cpaa.2012.11.675.  Google Scholar

[3]

Y. Amirat and K. Hamdache, Heat transfer in incompressible magnetic fluid,, J. Math. Fluid Mech., 14 (2012), 217.  doi: 10.1007/s00021-011-0050-5.  Google Scholar

[4]

H. I. Andersson and O. A. Valnes, Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole,, Acta Mech., 128 (1998), 39.   Google Scholar

[5]

E. Blums, A. Cebers and M. M. Maiorov, "Magnetic Fluids,'', Walter de Gryuter and Co., (1997).   Google Scholar

[6]

G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain,, Differential and Integral Equations, 14 (2001), 213.   Google Scholar

[7]

Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids,, J. Math. Pures Appl., 83 (2004), 243.  doi: 10.1016/j.matpur.2003.11.004.  Google Scholar

[8]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.  doi: 10.1007/BF01393835.  Google Scholar

[9]

B. A. Finlayson, Convective instability of ferromagnetic fluids,, J. Fluid Mech., 40 (1970), 753.   Google Scholar

[10]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I. Linearized Steady Problems,", Springer Tracts in Natural Philosophy, 38 (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[11]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Ii. Nonlinear Steady Problems,'', Springer Tracts in Natural Philosophy, 39 (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[12]

R. Ganguly, S. Sen and I. K. Puri, Heat transfer augmentation using a magnetic fluid under the influence of a line dipole,, J. Magn. Magn. Mater., 271 (2004), 63.   Google Scholar

[13]

M. Giaquinta and G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system, , J. Reine Angew. Math., 330 (1982), 173.   Google Scholar

[14]

Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,, Journal of Functional Analysis, 102 (1991), 72.  doi: 10.1016/0022-1236(91)90136-S.  Google Scholar

[15]

M. Giga, Y. Giga and H. Sohr, $L^p$ estimates for abstract linear parabolic equations,, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 197.   Google Scholar

[16]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'', Monographs and Studies in Mathematics, (1985).   Google Scholar

[17]

P. N. Kaloni and J. X. Lou, Convective instability of magnetic fluids,, Physical Review, E70 (2004), 1.   Google Scholar

[18]

P. N. Kaloni and A. Mahajan, Stability of magnetic fluid motions in a saturated porous medium,, Z. Angew. Math. Phys., 62 (2011), 529.  doi: 10.1007/s00033-010-0096-x.  Google Scholar

[19]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations,, SIAM J. Math. Anal., 37 (2006), 1417.  doi: 10.1137/S0036141004442197.  Google Scholar

[20]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'', Second English edition, (1969).   Google Scholar

[21]

O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'', Translations Math. Monogr., 23 (1968).   Google Scholar

[22]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,'', Dunod, (1969).   Google Scholar

[23]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Volume 1. Incompressible Models,'', Oxford Lecture Series in Mathematics and its Applications, 3 (1996).   Google Scholar

[24]

J. L. Neuringer and R. E. Rosensweig, Ferrohydrodynamics,, Phys. Fluids, 7 (1964), 1927.   Google Scholar

[25]

Q. Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, Applications of magnetic nonoparticles in biomedicine,, J. Phys. D: Appl. Phys., 36 (2003).   Google Scholar

[26]

R. E. Rosensweig, "Ferrohydrodynamics,'', Dover Publications, (1997).   Google Scholar

[27]

R. E. Rosensweig, Ferrofluids: Magnetically controllable fluids and their applications, , Lecture Notes in Physics (Springer-Verlag, 594 (2002), 61.   Google Scholar

[28]

M. I Shliomis, Effective viscosity of magnetic suspension,, Sov. Phys. JETP, 44 (1972), 1291.   Google Scholar

[29]

M. I. Shliomis and B. L. Smorodin, Convective instability of magnetized ferrofluids,, J. Magn. and Magn. Mater., 252 (2002), 197.   Google Scholar

[30]

M. I. Shliomis, Ferrofluids: Magnetically controllable fluids and their applications,, Lecture Notes in Physics (Springer-Verlag, 594 (2002), 85.   Google Scholar

[31]

M. I. Shliomis, Convective instability of magnetized ferrofluids: Influence of magnetophoresis and soret effect,, in, 584 (2002), 355.   Google Scholar

[32]

L. Sunil, P. Chand, P. Bharti and A. Mahajan, Thermal convection in micropolar ferrofluid in the presence of rotation,, J. of Magn. and Magn. Mater., 320 (2008), 316.   Google Scholar

[33]

Z. Tan and Y. Wang, Global analysis for strong solutions to the equations of a ferrofluid flow model,, J. Math. Anal. Appl., 364 (2010), 424.  doi: 10.1016/j.jmaa.2009.10.032.  Google Scholar

[34]

L. Tartar, "Topics in Nonlinear Analysis,", Publications Mathématiques d'Orsay 78, (1978).   Google Scholar

[35]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,'', Reprint of the 1984 edition, (1984).   Google Scholar

[36]

E. E Tzirtzilakis and N. G. Kafoussias, Biomagnetic fluid flow over a stretching sheet with nonlinear temperature dependent magnetization,, Z. angew. Math. Phys., 54 (2003), 551.  doi: 10.1007/s00033-003-1100-5.  Google Scholar

[37]

M. Zahn, Magnetic fluid and nonoparticle applications to nanotechnology,, Journal of Nanoparticle Research, 3 (2001), 73.   Google Scholar

show all references

References:
[1]

Y. Amirat and K. Hamdache, Strong solutions to the equations of a ferrofluid flow model,, J. Math. Anal. Appl., 353 (2009), 271.  doi: 10.1016/j.jmaa.2008.11.084.  Google Scholar

[2]

Y. Amirat and K. Hamdache, On a heated incompressible magnetic fluid model,, Comm. Pure Appl. Anal., 11 (2012), 675.  doi: 10.3934/cpaa.2012.11.675.  Google Scholar

[3]

Y. Amirat and K. Hamdache, Heat transfer in incompressible magnetic fluid,, J. Math. Fluid Mech., 14 (2012), 217.  doi: 10.1007/s00021-011-0050-5.  Google Scholar

[4]

H. I. Andersson and O. A. Valnes, Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole,, Acta Mech., 128 (1998), 39.   Google Scholar

[5]

E. Blums, A. Cebers and M. M. Maiorov, "Magnetic Fluids,'', Walter de Gryuter and Co., (1997).   Google Scholar

[6]

G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain,, Differential and Integral Equations, 14 (2001), 213.   Google Scholar

[7]

Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids,, J. Math. Pures Appl., 83 (2004), 243.  doi: 10.1016/j.matpur.2003.11.004.  Google Scholar

[8]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.  doi: 10.1007/BF01393835.  Google Scholar

[9]

B. A. Finlayson, Convective instability of ferromagnetic fluids,, J. Fluid Mech., 40 (1970), 753.   Google Scholar

[10]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I. Linearized Steady Problems,", Springer Tracts in Natural Philosophy, 38 (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[11]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Ii. Nonlinear Steady Problems,'', Springer Tracts in Natural Philosophy, 39 (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[12]

R. Ganguly, S. Sen and I. K. Puri, Heat transfer augmentation using a magnetic fluid under the influence of a line dipole,, J. Magn. Magn. Mater., 271 (2004), 63.   Google Scholar

[13]

M. Giaquinta and G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system, , J. Reine Angew. Math., 330 (1982), 173.   Google Scholar

[14]

Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,, Journal of Functional Analysis, 102 (1991), 72.  doi: 10.1016/0022-1236(91)90136-S.  Google Scholar

[15]

M. Giga, Y. Giga and H. Sohr, $L^p$ estimates for abstract linear parabolic equations,, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 197.   Google Scholar

[16]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'', Monographs and Studies in Mathematics, (1985).   Google Scholar

[17]

P. N. Kaloni and J. X. Lou, Convective instability of magnetic fluids,, Physical Review, E70 (2004), 1.   Google Scholar

[18]

P. N. Kaloni and A. Mahajan, Stability of magnetic fluid motions in a saturated porous medium,, Z. Angew. Math. Phys., 62 (2011), 529.  doi: 10.1007/s00033-010-0096-x.  Google Scholar

[19]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations,, SIAM J. Math. Anal., 37 (2006), 1417.  doi: 10.1137/S0036141004442197.  Google Scholar

[20]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'', Second English edition, (1969).   Google Scholar

[21]

O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'', Translations Math. Monogr., 23 (1968).   Google Scholar

[22]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,'', Dunod, (1969).   Google Scholar

[23]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Volume 1. Incompressible Models,'', Oxford Lecture Series in Mathematics and its Applications, 3 (1996).   Google Scholar

[24]

J. L. Neuringer and R. E. Rosensweig, Ferrohydrodynamics,, Phys. Fluids, 7 (1964), 1927.   Google Scholar

[25]

Q. Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, Applications of magnetic nonoparticles in biomedicine,, J. Phys. D: Appl. Phys., 36 (2003).   Google Scholar

[26]

R. E. Rosensweig, "Ferrohydrodynamics,'', Dover Publications, (1997).   Google Scholar

[27]

R. E. Rosensweig, Ferrofluids: Magnetically controllable fluids and their applications, , Lecture Notes in Physics (Springer-Verlag, 594 (2002), 61.   Google Scholar

[28]

M. I Shliomis, Effective viscosity of magnetic suspension,, Sov. Phys. JETP, 44 (1972), 1291.   Google Scholar

[29]

M. I. Shliomis and B. L. Smorodin, Convective instability of magnetized ferrofluids,, J. Magn. and Magn. Mater., 252 (2002), 197.   Google Scholar

[30]

M. I. Shliomis, Ferrofluids: Magnetically controllable fluids and their applications,, Lecture Notes in Physics (Springer-Verlag, 594 (2002), 85.   Google Scholar

[31]

M. I. Shliomis, Convective instability of magnetized ferrofluids: Influence of magnetophoresis and soret effect,, in, 584 (2002), 355.   Google Scholar

[32]

L. Sunil, P. Chand, P. Bharti and A. Mahajan, Thermal convection in micropolar ferrofluid in the presence of rotation,, J. of Magn. and Magn. Mater., 320 (2008), 316.   Google Scholar

[33]

Z. Tan and Y. Wang, Global analysis for strong solutions to the equations of a ferrofluid flow model,, J. Math. Anal. Appl., 364 (2010), 424.  doi: 10.1016/j.jmaa.2009.10.032.  Google Scholar

[34]

L. Tartar, "Topics in Nonlinear Analysis,", Publications Mathématiques d'Orsay 78, (1978).   Google Scholar

[35]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,'', Reprint of the 1984 edition, (1984).   Google Scholar

[36]

E. E Tzirtzilakis and N. G. Kafoussias, Biomagnetic fluid flow over a stretching sheet with nonlinear temperature dependent magnetization,, Z. angew. Math. Phys., 54 (2003), 551.  doi: 10.1007/s00033-003-1100-5.  Google Scholar

[37]

M. Zahn, Magnetic fluid and nonoparticle applications to nanotechnology,, Journal of Nanoparticle Research, 3 (2001), 73.   Google Scholar

[1]

Youcef Amirat, Kamel Hamdache. Weak solutions to stationary equations of heat transfer in a magnetic fluid. Communications on Pure & Applied Analysis, 2019, 18 (2) : 709-734. doi: 10.3934/cpaa.2019035

[2]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[3]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[4]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[5]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[6]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[7]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[8]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[9]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[10]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217

[11]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[12]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[13]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[14]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[15]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[16]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[17]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[18]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[19]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

[20]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]