August  2013, 33(8): 3321-3327. doi: 10.3934/dcds.2013.33.3321

No entire function with real multipliers in class $\mathcal{S}$

1. 

Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland

Received  July 2012 Revised  August 2012 Published  January 2013

We prove that there is no entire transcendental function in class $\mathcal{S}$ with real multipliers of all repelling periodic orbits.
Citation: Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3321-3327. doi: 10.3934/dcds.2013.33.3321
References:
[1]

Discrete Contin. Dyn. Syst., 32 (2012), 2375-2402. doi: 10.3934/dcds.2012.32.2375.  Google Scholar

[2]

Bull. Amer. Math. Soc., 29 (1993), 151-188. doi: 10.1090/S0273-0979-1993-00432-4.  Google Scholar

[3]

Trans. Amer. Math. Soc., 363 (2011), 6453-6463. doi: 10.1090/S0002-9947-2011-05308-0.  Google Scholar

[4]

Bull. Soc. Math. France, 48 (1920), 208-314.  Google Scholar

[5]

Ergodic Theory Dynam. Systems, 22 (2002), 555-570. doi: 10.1017/S0143385702000275.  Google Scholar

[6]

Trans. Amer. Math. Soc., 363 (2011), 203-228. doi: 10.1090/S0002-9947-2010-05125-6.  Google Scholar

[7]

Math. Proc. Cambridge Philos. Soc., 119 (1996), 513-536. doi: 10.1017/S0305004100074387.  Google Scholar

show all references

References:
[1]

Discrete Contin. Dyn. Syst., 32 (2012), 2375-2402. doi: 10.3934/dcds.2012.32.2375.  Google Scholar

[2]

Bull. Amer. Math. Soc., 29 (1993), 151-188. doi: 10.1090/S0273-0979-1993-00432-4.  Google Scholar

[3]

Trans. Amer. Math. Soc., 363 (2011), 6453-6463. doi: 10.1090/S0002-9947-2011-05308-0.  Google Scholar

[4]

Bull. Soc. Math. France, 48 (1920), 208-314.  Google Scholar

[5]

Ergodic Theory Dynam. Systems, 22 (2002), 555-570. doi: 10.1017/S0143385702000275.  Google Scholar

[6]

Trans. Amer. Math. Soc., 363 (2011), 203-228. doi: 10.1090/S0002-9947-2010-05125-6.  Google Scholar

[7]

Math. Proc. Cambridge Philos. Soc., 119 (1996), 513-536. doi: 10.1017/S0305004100074387.  Google Scholar

[1]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[2]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[3]

Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035

[4]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[5]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[6]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[7]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[8]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[9]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[10]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[11]

Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003

[12]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409

[13]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[14]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

[15]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[16]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[17]

Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253

[18]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[19]

René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021012

[20]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]