August  2013, 33(8): 3329-3353. doi: 10.3934/dcds.2013.33.3329

On the control of non holonomic systems by active constraints

1. 

Department of Mathematics, Penn State University, University Park, Pa.16802

2. 

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States

3. 

Dipartimento di Matematica Pura ed Applicata, Università di Padova, Padova 35141, Italy

Received  April 2012 Revised  August 2012 Published  January 2013

The paper is concerned with mechanical systems which are controlled by implementing a number of time-dependent, frictionless holonomic constraints. The main novelty is due to the presence of additional non-holonomic constraints. We develop a general framework to analyze these problems, deriving the equations of motion and studying the continuity properties of the "control-to-trajectory" maps. Various geometric characterizations are provided, in order that the equations be affine w.r.t. the time derivative of the control. In this case the system is fit for jumps, and the evolution is well defined also in connection with discontinuous control functions. The classical Roller Racer provides an example where the non-affine dependence of the equations on the derivative of the control is due only to the non-holonomic constraint. This is a case where the presence of quadratic terms in the equations can be used for controllability purposes.
Citation: Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329
References:
[1]

in "Mathematical Control Theory" (Eds. J. Baillieul and J. C. Willems), Springer Verlag, New York, (1998), 322-354.  Google Scholar

[2]

Springer Verlag, 2003. doi: 10.1007/b97376.  Google Scholar

[3]

Notices Amer. Math. Soc., 52 (2005), 324-333.  Google Scholar

[4]

Discr. Cont. Dynam. Syst., 20 (2008), 1-35. doi: 10.3934/dcds.2008.20.1.  Google Scholar

[5]

Boll. Un. Matem. Italiana, 2-B (1988), 641-656.  Google Scholar

[6]

J. Optim. Theory & Appl., 71 (1991), 67-84. doi: 10.1007/BF00940040.  Google Scholar

[7]

SIAM J. Control, 31 (1993), 1205-1220. doi: 10.1137/0331057.  Google Scholar

[8]

Arch. Rational Mech. Anal., 196 (2010), 97-141. doi: 10.1007/s00205-009-0237-6.  Google Scholar

[9]

Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Mem., 19 (1989), 195–-246. (1991).  Google Scholar

[10]

Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Mem., 1 (1991), 147-196.  Google Scholar

[11]

Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem., 9 (1993), 5-30.  Google Scholar

[12]

Springer Verlag, 2004.  Google Scholar

[13]

Dynam. Cont. Discr. Imp. Systems, 4 (1998), 1-21.  Google Scholar

[14]

Ann. Soc. Polonaise Math., 6 (1927), 1-7. Google Scholar

[15]

Dynamical Systems, 16 (2001), 347-397. doi: 10.1080/14689360110090424.  Google Scholar

[16]

Int. J. Bifurc. Chaos, 15 (2005), 2747-2756. doi: 10.1142/S0218127405013745.  Google Scholar

[17]

Nonlinearity, 18 (2005), 2737-2743. doi: 10.1088/0951-7715/18/6/017.  Google Scholar

[18]

in "Proc. 30-th IEEE Conference on Decision and Control" IEEE Publications, New York, (1991), 437-442. Google Scholar

[19]

in "Symplectic Geometry and Mathematical Physics" (1991), 260-287, (Eds. P. Donato, C. Duval, J. Elhadad and G. M. Tuynman), Birkhäuser, Boston.  Google Scholar

[20]

J. Math. Syst. Estim. Control, 4 (1994), 385-388.  Google Scholar

[21]

Annals of Math., 63 (1956), 20-63.  Google Scholar

[22]

Springer Verlag, New York, 1990.  Google Scholar

[23]

Atti Accad. Naz. Lincei, Classe di Scienze Mat. Fis. Nat. Serie 8, 82 (1988), 685-695.  Google Scholar

[24]

European J. Mechanics A/Solids, 10 (1991), 405-431.  Google Scholar

[25]

Differential Geometry and Control, Proc. Sympos. Pure Math., (AMS, Providence) (1999), 279-296.  Google Scholar

[26]

Annals of Math., 69 (1959), 119-132.  Google Scholar

[27]

Springer-Verlag, Berlin, 1983.  Google Scholar

[28]

Ann. Prob., 6 (1978), 17-41.  Google Scholar

show all references

References:
[1]

in "Mathematical Control Theory" (Eds. J. Baillieul and J. C. Willems), Springer Verlag, New York, (1998), 322-354.  Google Scholar

[2]

Springer Verlag, 2003. doi: 10.1007/b97376.  Google Scholar

[3]

Notices Amer. Math. Soc., 52 (2005), 324-333.  Google Scholar

[4]

Discr. Cont. Dynam. Syst., 20 (2008), 1-35. doi: 10.3934/dcds.2008.20.1.  Google Scholar

[5]

Boll. Un. Matem. Italiana, 2-B (1988), 641-656.  Google Scholar

[6]

J. Optim. Theory & Appl., 71 (1991), 67-84. doi: 10.1007/BF00940040.  Google Scholar

[7]

SIAM J. Control, 31 (1993), 1205-1220. doi: 10.1137/0331057.  Google Scholar

[8]

Arch. Rational Mech. Anal., 196 (2010), 97-141. doi: 10.1007/s00205-009-0237-6.  Google Scholar

[9]

Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Mem., 19 (1989), 195–-246. (1991).  Google Scholar

[10]

Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Mem., 1 (1991), 147-196.  Google Scholar

[11]

Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem., 9 (1993), 5-30.  Google Scholar

[12]

Springer Verlag, 2004.  Google Scholar

[13]

Dynam. Cont. Discr. Imp. Systems, 4 (1998), 1-21.  Google Scholar

[14]

Ann. Soc. Polonaise Math., 6 (1927), 1-7. Google Scholar

[15]

Dynamical Systems, 16 (2001), 347-397. doi: 10.1080/14689360110090424.  Google Scholar

[16]

Int. J. Bifurc. Chaos, 15 (2005), 2747-2756. doi: 10.1142/S0218127405013745.  Google Scholar

[17]

Nonlinearity, 18 (2005), 2737-2743. doi: 10.1088/0951-7715/18/6/017.  Google Scholar

[18]

in "Proc. 30-th IEEE Conference on Decision and Control" IEEE Publications, New York, (1991), 437-442. Google Scholar

[19]

in "Symplectic Geometry and Mathematical Physics" (1991), 260-287, (Eds. P. Donato, C. Duval, J. Elhadad and G. M. Tuynman), Birkhäuser, Boston.  Google Scholar

[20]

J. Math. Syst. Estim. Control, 4 (1994), 385-388.  Google Scholar

[21]

Annals of Math., 63 (1956), 20-63.  Google Scholar

[22]

Springer Verlag, New York, 1990.  Google Scholar

[23]

Atti Accad. Naz. Lincei, Classe di Scienze Mat. Fis. Nat. Serie 8, 82 (1988), 685-695.  Google Scholar

[24]

European J. Mechanics A/Solids, 10 (1991), 405-431.  Google Scholar

[25]

Differential Geometry and Control, Proc. Sympos. Pure Math., (AMS, Providence) (1999), 279-296.  Google Scholar

[26]

Annals of Math., 69 (1959), 119-132.  Google Scholar

[27]

Springer-Verlag, Berlin, 1983.  Google Scholar

[28]

Ann. Prob., 6 (1978), 17-41.  Google Scholar

[1]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[2]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[3]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[4]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[5]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[6]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021056

[7]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[8]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[9]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[10]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[11]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[12]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[13]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[14]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[15]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[16]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[17]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021024

[18]

Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033

[19]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[20]

Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]