August  2013, 33(8): 3355-3363. doi: 10.3934/dcds.2013.33.3355

An alternative approach to generalised BV and the application to expanding interval maps

1. 

Dipartimento di Matematica, II Università di Roma (Tor Vergata), Via della Ricerca Scienti ca, 00133 Roma, Italy

Received  April 2012 Revised  May 2012 Published  January 2013

We introduce a family of Banach spaces of measures, each containing the set of measures with density of bounded variation. These spaces are suitable for the study of weighted transfer operators of piecewise-smooth maps of the interval where the weighting used in the transfer operator is not better than piecewise Hölder continuous and the partition on which the map is continuous may possess a countable number of elements. For such weighted transfer operators we give upper bounds for both the spectral radius and for the essential spectral radius.
Citation: Oliver Butterley. An alternative approach to generalised BV and the application to expanding interval maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3355-3363. doi: 10.3934/dcds.2013.33.3355
References:
[1]

V. Baladi, "Positive Transfer Operators & Decay of Correlation,", 16 of Advanced Series in Nonlinear Dynamics, 16 (2000).  doi: 10.1142/9789812813633.  Google Scholar

[2]

J. Bergh and J. Löfström, "Interpolation Spaces, An Introduction,", 223, 223 (1976).   Google Scholar

[3]

H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens,, Proc. Amer. Math. Soc., 118 (1993), 627.  doi: 10.2307/2160348.  Google Scholar

[4]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations,, Z. Wahrsch. Verw. Gebiete, 69 (1985), 461.  doi: 10.1007/BF00532744.  Google Scholar

[5]

S. Luzzatto, I. Melbourne and F. Paccaut, The Lorenz attractor is mixing,, Comm. Math. Phys., 260 (2005), 393.  doi: 10.1007/s00220-005-1411-9.  Google Scholar

[6]

R. D. Nussbaum, The radius of the essential spectrum,, Duke Math. J., 37 (1970), 473.   Google Scholar

[7]

M. Pollicott, On the rate of mixing of Axiom A flows,, Invent. Math., 81 (1985), 413.  doi: 10.1007/BF01388579.  Google Scholar

[8]

D. Thomine, A spectral gap for transfer operators of piecewise expanding maps,, Discrete Contin. Dyn. Syst., 30 (2011), 917.  doi: 10.3934/dcds.2011.30.917.  Google Scholar

show all references

References:
[1]

V. Baladi, "Positive Transfer Operators & Decay of Correlation,", 16 of Advanced Series in Nonlinear Dynamics, 16 (2000).  doi: 10.1142/9789812813633.  Google Scholar

[2]

J. Bergh and J. Löfström, "Interpolation Spaces, An Introduction,", 223, 223 (1976).   Google Scholar

[3]

H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens,, Proc. Amer. Math. Soc., 118 (1993), 627.  doi: 10.2307/2160348.  Google Scholar

[4]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations,, Z. Wahrsch. Verw. Gebiete, 69 (1985), 461.  doi: 10.1007/BF00532744.  Google Scholar

[5]

S. Luzzatto, I. Melbourne and F. Paccaut, The Lorenz attractor is mixing,, Comm. Math. Phys., 260 (2005), 393.  doi: 10.1007/s00220-005-1411-9.  Google Scholar

[6]

R. D. Nussbaum, The radius of the essential spectrum,, Duke Math. J., 37 (1970), 473.   Google Scholar

[7]

M. Pollicott, On the rate of mixing of Axiom A flows,, Invent. Math., 81 (1985), 413.  doi: 10.1007/BF01388579.  Google Scholar

[8]

D. Thomine, A spectral gap for transfer operators of piecewise expanding maps,, Discrete Contin. Dyn. Syst., 30 (2011), 917.  doi: 10.3934/dcds.2011.30.917.  Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[3]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]