-
Previous Article
Optimal partial regularity results for nonlinear elliptic systems in Carnot groups
- DCDS Home
- This Issue
-
Next Article
An alternative approach to generalised BV and the application to expanding interval maps
On the mixing properties of piecewise expanding maps under composition with permutations
1. | College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, United Kingdom, United Kingdom, United Kingdom |
References:
[1] |
J. Phys. A: Math. Gen., 310 (2002), 347-363.
doi: 10.1016/S0378-4371(02)00774-4. |
[2] |
(1989), cited in [9]. Google Scholar |
[3] |
Ann. Inst. H Poincaré Phys. Théor., 62 (1995), 251-265. |
[4] |
World Sci. Publ., River Edge, NJ, 2000.
doi: 10.1142/9789812813633. |
[5] |
Ann. Inst. Fourier., 57 (2007), 127-154. |
[6] |
J. Phys. A: Math. Gen., 34 (2001), L319-L326.
doi: 10.1088/0305-4470/34/22/101. |
[7] |
Probability and its Applications, Birkhäuser Boston, Inc., Boston, 1997.
doi: 10.1007/978-1-4612-2024-4. |
[8] |
Portugal. Math., 37 (1978), 135-144. |
[9] |
J. Stat. Phys., 115 (2004) 217-254.
doi: 10.1023/B:JOSS.0000019817.71073.61. |
[10] |
Nonlinearity, 13 (2000), 1171-1188.
doi: 10.1088/0951-7715/13/4/310. |
[11] |
SIAM J. Numer. Anal., 36 (1999), 491-515.
doi: 10.1137/S0036142996313002. |
[12] |
Linear Algebra Appl., 142 (1990), 173-193. Google Scholar |
[13] |
Ergod. Theor. Dyn. Syst., 16 (1996), 451-491.
doi: 10.1017/S0143385700008920. |
[14] |
Cambridge University Press, Cambridge, 1993. |
[15] |
SIAM J. Sci. Comput., 24 (2003), 1839-1863.
doi: 10.1137/S106482750238911X. |
[16] |
Math. Proc. Camb. Phil. Soc., 107 (1990), 401-413.
doi: 10.1017/S0305004100068675. |
[17] |
Isr. J. Math., 139 (2004), 29-65.
doi: 10.1007/BF02787541. |
[18] |
Ergod. Theor. Dyn. Syst., 26 (2006), 189-217.
doi: 10.1017/S0143385705000374. |
[19] |
J. London Math. Soc. (2), 23 (1981), 92-112.
doi: 10.1112/jlms/s2-23.1.92. |
[20] |
Math. Z., 180 (1982), 119-140.
doi: 10.1007/BF01215004. |
[21] |
Ergod. Theor. Dyn. Syst., 24 (2004), 495-524.
doi: 10.1017/S0143385703000671. |
[22] |
Linear Algebra Appl., 267 (1997), 241-246. |
[23] |
(Russian) Izvestiya Akad. Nauk SSSR Ser. Math., 15 (1951), 361-383. |
[24] |
Comm. Math. Phys., 96 (1984), 181-193. |
[25] |
Springer-Verlag, New York, 1994. |
[26] |
Ergod. Theor. Dyn. Syst., 19 (1999), 671-685.
doi: 10.1017/S0143385799133856. |
[27] |
Osaka J. Math., 27 (1990), 81-116. |
[28] |
Monte Carlo Methods and Appl., 4 (1998), 141-162.
doi: 10.1515/mcma.1998.4.2.141. |
[29] |
in "Dynamics & Stochastics," IMS Lecture Notes-Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, (2006), 189-197.
doi: 10.1214/074921706000000211. |
[30] |
Springer, New York-Heidelberg, 1974. |
[31] |
Chapman and Hall Mathematics Series, Chapman and Hall, Ltd., London, 1991. |
[32] |
Braz. Math. Colloq., 21, IMPA, 1997. Google Scholar |
[33] |
Isr. J. Math., 110 (1999), 153-188.
doi: 10.1007/BF02808180. |
[34] |
J. Phys. A: Math. Gen., 36 (2003), 3425-3450.
doi: 10.1088/0305-4470/36/12/333. |
show all references
References:
[1] |
J. Phys. A: Math. Gen., 310 (2002), 347-363.
doi: 10.1016/S0378-4371(02)00774-4. |
[2] |
(1989), cited in [9]. Google Scholar |
[3] |
Ann. Inst. H Poincaré Phys. Théor., 62 (1995), 251-265. |
[4] |
World Sci. Publ., River Edge, NJ, 2000.
doi: 10.1142/9789812813633. |
[5] |
Ann. Inst. Fourier., 57 (2007), 127-154. |
[6] |
J. Phys. A: Math. Gen., 34 (2001), L319-L326.
doi: 10.1088/0305-4470/34/22/101. |
[7] |
Probability and its Applications, Birkhäuser Boston, Inc., Boston, 1997.
doi: 10.1007/978-1-4612-2024-4. |
[8] |
Portugal. Math., 37 (1978), 135-144. |
[9] |
J. Stat. Phys., 115 (2004) 217-254.
doi: 10.1023/B:JOSS.0000019817.71073.61. |
[10] |
Nonlinearity, 13 (2000), 1171-1188.
doi: 10.1088/0951-7715/13/4/310. |
[11] |
SIAM J. Numer. Anal., 36 (1999), 491-515.
doi: 10.1137/S0036142996313002. |
[12] |
Linear Algebra Appl., 142 (1990), 173-193. Google Scholar |
[13] |
Ergod. Theor. Dyn. Syst., 16 (1996), 451-491.
doi: 10.1017/S0143385700008920. |
[14] |
Cambridge University Press, Cambridge, 1993. |
[15] |
SIAM J. Sci. Comput., 24 (2003), 1839-1863.
doi: 10.1137/S106482750238911X. |
[16] |
Math. Proc. Camb. Phil. Soc., 107 (1990), 401-413.
doi: 10.1017/S0305004100068675. |
[17] |
Isr. J. Math., 139 (2004), 29-65.
doi: 10.1007/BF02787541. |
[18] |
Ergod. Theor. Dyn. Syst., 26 (2006), 189-217.
doi: 10.1017/S0143385705000374. |
[19] |
J. London Math. Soc. (2), 23 (1981), 92-112.
doi: 10.1112/jlms/s2-23.1.92. |
[20] |
Math. Z., 180 (1982), 119-140.
doi: 10.1007/BF01215004. |
[21] |
Ergod. Theor. Dyn. Syst., 24 (2004), 495-524.
doi: 10.1017/S0143385703000671. |
[22] |
Linear Algebra Appl., 267 (1997), 241-246. |
[23] |
(Russian) Izvestiya Akad. Nauk SSSR Ser. Math., 15 (1951), 361-383. |
[24] |
Comm. Math. Phys., 96 (1984), 181-193. |
[25] |
Springer-Verlag, New York, 1994. |
[26] |
Ergod. Theor. Dyn. Syst., 19 (1999), 671-685.
doi: 10.1017/S0143385799133856. |
[27] |
Osaka J. Math., 27 (1990), 81-116. |
[28] |
Monte Carlo Methods and Appl., 4 (1998), 141-162.
doi: 10.1515/mcma.1998.4.2.141. |
[29] |
in "Dynamics & Stochastics," IMS Lecture Notes-Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, (2006), 189-197.
doi: 10.1214/074921706000000211. |
[30] |
Springer, New York-Heidelberg, 1974. |
[31] |
Chapman and Hall Mathematics Series, Chapman and Hall, Ltd., London, 1991. |
[32] |
Braz. Math. Colloq., 21, IMPA, 1997. Google Scholar |
[33] |
Isr. J. Math., 110 (1999), 153-188.
doi: 10.1007/BF02808180. |
[34] |
J. Phys. A: Math. Gen., 36 (2003), 3425-3450.
doi: 10.1088/0305-4470/36/12/333. |
[1] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[2] |
Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021057 |
[3] |
Dor Elimelech. Permutations with restricted movement. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021038 |
[4] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[5] |
Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042 |
[6] |
Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel. Generalised Manin transformations and QRT maps. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021009 |
[7] |
Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 |
[8] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[9] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[10] |
Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021067 |
[11] |
Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389 |
[12] |
Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021037 |
[13] |
John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023 |
[14] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[15] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[16] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[17] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391 |
[18] |
Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026 |
[19] |
Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021009 |
[20] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021104 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]