\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal partial regularity results for nonlinear elliptic systems in Carnot groups

Abstract Related Papers Cited by
  • In this paper, we consider partial regularity for weak solutions of second-order nonlinear elliptic systems in Carnot groups. By the method of A-harmonic approximation, we establish optimal interior partial regularity of weak solutions to systems under controllable growth conditions with sub-quadratic growth in Carnot groups.
    Mathematics Subject Classification: Primary: 35B65, 35J47; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E.De Giorgi, "Frontiere orientate di misura minima," Seminaro Math. Scuola Norm. Sup. Pisa, 61(1960), Editrice Tecnico Scientifica, Pisa 57(1961).

    [2]

    E.De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll.Un. Mat. Ital., 4 (1968), 135-137.

    [3]

    M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems, J.Reine Angew. Math., 311-312 (1979), 145-169.

    [4]

    P.A. Ivert, Regularit'dtsuntersuchungen von Lösungen ellipti-scher Sy steme von quasilinearen Differen-tialgleichungen zweiter Ordnung, Manus. Math., 30 (1979), 53-88.doi: 10.1007/BF01305990.

    [5]

    C. Hamburger, Partial boundary regularity of solutions of nonlinear superelliptic systems, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2007), 63-81.

    [6]

    L. Beck, Partial regularity for weak solutions of nonlinear elliptic systems: the subquadratic case, Manus. Math., 123 (2007), 453-491.doi: 10.1007/s00229-007-0100-8.

    [7]

    L.Simon, "Lectures on Geometric Measure Theory," Canberra: Australian National University Press, 1983.

    [8]

    W.K. Allard, On the first variation of a varifold, Annals of Math., 95 (1972), 417-491.

    [9]

    L.Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps," Basel, Boston, Berlin: Birkhäuser,1996 doi: 10.1007/978-3-0348-9193-6.

    [10]

    R.Schoen and K.Uhlenbeck, A regularity theorem for harmonic maps, J.Diff.Geom., 17 (1982), 307-335.

    [11]

    F.Duzaar and K.Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J.Reine Angew. Math., 546 (2002), 73-138.doi: 10.1515/crll.2002.046.

    [12]

    F.Duzaar and J.F.Grotowski, Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation, Manus. Math., 103 (2000), 267-298.doi: 10.1007/s002290070007.

    [13]

    S. Chen and Z. Tan, The method of A-harmonic approximation and optimal interior interior partial regularity for nonlinear elliptic systems under the controllable growth condition, J. Math. Anal. Appl., 335 (2007), 20-42.doi: 10.1016/j.jmaa.2007.01.042.

    [14]

    S. Chen and Z. Tan, Optimal interior partial regularity for nonlinear elliptic systems, Discrete Cont Dyn-A, 27 (2010), 981-993.doi: 10.3934/dcds.2010.27.981.

    [15]

    F. Duzaar, J.F. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth, Ann. Mat. Pura Appl., 184 (2005), 421-448.doi: 10.1007/s10231-004-0117-5.

    [16]

    F. Duzaar and G. Mingione, Regularity for degenerate elliptic problems via $p$-harmonic approximation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 21 (2004), 735-766.doi: 10.1016/j.anihpc.2003.09.003.

    [17]

    L. Capogna, Regularity for quasilinear equation and 1-quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263-295.doi: 10.1007/s002080050261.

    [18]

    L. Capogna and N.Garofalo, Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type, J. Eur. Math. Soc., 5 (2003), 1-40.doi: 10.1007/s100970200043.

    [19]

    E. Shores, Hypoellipticity for linear degenerate elliptic systems in Carnot groups and applications, p27. arXiv: math. AP/ 0502569.

    [20]

    A. Föglein, Partial regularity results for subelliptic systems in the Heisenberg group, Cacl Var Partial Dif., 32 (2008), 25-51.doi: 10.1007/s00526-007-0127-4.

    [21]

    J. Wang and P. Niu, Optimal Partial regularity for weak solutions of nonlinear sub-elliptic systems in Carnot groups, Nonlinear Anal., 72 (2010), 4162-4187.doi: 10.1016/j.na.2010.01.048.

    [22]

    G. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207.

    [23]

    D. Jerison, The poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523.doi: 10.1215/S0012-7094-86-05329-9.

    [24]

    N. Garofalo and D. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081-1144.doi: 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A.

    [25]

    M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth, Ann. Mat. Pura Appl. IV. Ser., 175 (1998), 141-164.doi: 10.1007/BF01783679.

    [26]

    E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case $1 < p < 2$, J. Math. Anal. Appl., 140 (1989), 115-135.doi: 10.1016/0022-247X(89)90098-X.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return