August  2013, 33(8): 3391-3405. doi: 10.3934/dcds.2013.33.3391

Optimal partial regularity results for nonlinear elliptic systems in Carnot groups

1. 

Department of Mathematics and Information Science, Zhangzhou Normal University, Zhangzhou 363000, Fujian, China

2. 

School of Mathematical Science, Xiamen University, Xiamen 361005, Fujian

Received  May 2012 Revised  July 2012 Published  January 2013

In this paper, we consider partial regularity for weak solutions of second-order nonlinear elliptic systems in Carnot groups. By the method of A-harmonic approximation, we establish optimal interior partial regularity of weak solutions to systems under controllable growth conditions with sub-quadratic growth in Carnot groups.
Citation: Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391
References:
[1]

E.De Giorgi, "Frontiere orientate di misura minima,", Seminaro Math. Scuola Norm. Sup. Pisa, (1960).   Google Scholar

[2]

E.De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico,, Boll.Un. Mat. Ital., 4 (1968), 135.   Google Scholar

[3]

M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems,, J.Reine Angew. Math., 311-312 (1979), 311.   Google Scholar

[4]

P.A. Ivert, Regularit'dtsuntersuchungen von Lösungen ellipti-scher Sy steme von quasilinearen Differen-tialgleichungen zweiter Ordnung,, Manus. Math., 30 (1979), 53.  doi: 10.1007/BF01305990.  Google Scholar

[5]

C. Hamburger, Partial boundary regularity of solutions of nonlinear superelliptic systems,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2007), 63.   Google Scholar

[6]

L. Beck, Partial regularity for weak solutions of nonlinear elliptic systems: the subquadratic case,, Manus. Math., 123 (2007), 453.  doi: 10.1007/s00229-007-0100-8.  Google Scholar

[7]

L.Simon, "Lectures on Geometric Measure Theory,", Canberra: Australian National University Press, (1983).   Google Scholar

[8]

W.K. Allard, On the first variation of a varifold,, Annals of Math., 95 (1972), 417.   Google Scholar

[9]

L.Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps,", Basel, ().  doi: 10.1007/978-3-0348-9193-6.  Google Scholar

[10]

R.Schoen and K.Uhlenbeck, A regularity theorem for harmonic maps,, J.Diff.Geom., 17 (1982), 307.   Google Scholar

[11]

F.Duzaar and K.Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals,, J.Reine Angew. Math., 546 (2002), 73.  doi: 10.1515/crll.2002.046.  Google Scholar

[12]

F.Duzaar and J.F.Grotowski, Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation,, Manus. Math., 103 (2000), 267.  doi: 10.1007/s002290070007.  Google Scholar

[13]

S. Chen and Z. Tan, The method of A-harmonic approximation and optimal interior interior partial regularity for nonlinear elliptic systems under the controllable growth condition,, J. Math. Anal. Appl., 335 (2007), 20.  doi: 10.1016/j.jmaa.2007.01.042.  Google Scholar

[14]

S. Chen and Z. Tan, Optimal interior partial regularity for nonlinear elliptic systems,, Discrete Cont Dyn-A, 27 (2010), 981.  doi: 10.3934/dcds.2010.27.981.  Google Scholar

[15]

F. Duzaar, J.F. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth,, Ann. Mat. Pura Appl., 184 (2005), 421.  doi: 10.1007/s10231-004-0117-5.  Google Scholar

[16]

F. Duzaar and G. Mingione, Regularity for degenerate elliptic problems via $p$-harmonic approximation,, Ann. Inst. Henri Poincaré, 21 (2004), 735.  doi: 10.1016/j.anihpc.2003.09.003.  Google Scholar

[17]

L. Capogna, Regularity for quasilinear equation and 1-quasiconformal maps in Carnot groups,, Math. Ann., 313 (1999), 263.  doi: 10.1007/s002080050261.  Google Scholar

[18]

L. Capogna and N.Garofalo, Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type,, J. Eur. Math. Soc., 5 (2003), 1.  doi: 10.1007/s100970200043.  Google Scholar

[19]

E. Shores, Hypoellipticity for linear degenerate elliptic systems in Carnot groups and applications,, p27. arXiv: math. AP/ 0502569., (0502).   Google Scholar

[20]

A. Föglein, Partial regularity results for subelliptic systems in the Heisenberg group,, Cacl Var Partial Dif., 32 (2008), 25.  doi: 10.1007/s00526-007-0127-4.  Google Scholar

[21]

J. Wang and P. Niu, Optimal Partial regularity for weak solutions of nonlinear sub-elliptic systems in Carnot groups,, Nonlinear Anal., 72 (2010), 4162.  doi: 10.1016/j.na.2010.01.048.  Google Scholar

[22]

G. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups,, Ark. Mat., 13 (1975), 161.   Google Scholar

[23]

D. Jerison, The poincaré inequality for vector fields satisfying Hörmander's condition,, Duke Math. J., 53 (1986), 503.  doi: 10.1215/S0012-7094-86-05329-9.  Google Scholar

[24]

N. Garofalo and D. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces,, Comm. Pure Appl. Math., 49 (1996), 1081.  doi: 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A.  Google Scholar

[25]

M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth,, Ann. Mat. Pura Appl. IV. Ser., 175 (1998), 141.  doi: 10.1007/BF01783679.  Google Scholar

[26]

E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case $1 < p < 2$,, J. Math. Anal. Appl., 140 (1989), 115.  doi: 10.1016/0022-247X(89)90098-X.  Google Scholar

show all references

References:
[1]

E.De Giorgi, "Frontiere orientate di misura minima,", Seminaro Math. Scuola Norm. Sup. Pisa, (1960).   Google Scholar

[2]

E.De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico,, Boll.Un. Mat. Ital., 4 (1968), 135.   Google Scholar

[3]

M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems,, J.Reine Angew. Math., 311-312 (1979), 311.   Google Scholar

[4]

P.A. Ivert, Regularit'dtsuntersuchungen von Lösungen ellipti-scher Sy steme von quasilinearen Differen-tialgleichungen zweiter Ordnung,, Manus. Math., 30 (1979), 53.  doi: 10.1007/BF01305990.  Google Scholar

[5]

C. Hamburger, Partial boundary regularity of solutions of nonlinear superelliptic systems,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2007), 63.   Google Scholar

[6]

L. Beck, Partial regularity for weak solutions of nonlinear elliptic systems: the subquadratic case,, Manus. Math., 123 (2007), 453.  doi: 10.1007/s00229-007-0100-8.  Google Scholar

[7]

L.Simon, "Lectures on Geometric Measure Theory,", Canberra: Australian National University Press, (1983).   Google Scholar

[8]

W.K. Allard, On the first variation of a varifold,, Annals of Math., 95 (1972), 417.   Google Scholar

[9]

L.Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps,", Basel, ().  doi: 10.1007/978-3-0348-9193-6.  Google Scholar

[10]

R.Schoen and K.Uhlenbeck, A regularity theorem for harmonic maps,, J.Diff.Geom., 17 (1982), 307.   Google Scholar

[11]

F.Duzaar and K.Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals,, J.Reine Angew. Math., 546 (2002), 73.  doi: 10.1515/crll.2002.046.  Google Scholar

[12]

F.Duzaar and J.F.Grotowski, Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation,, Manus. Math., 103 (2000), 267.  doi: 10.1007/s002290070007.  Google Scholar

[13]

S. Chen and Z. Tan, The method of A-harmonic approximation and optimal interior interior partial regularity for nonlinear elliptic systems under the controllable growth condition,, J. Math. Anal. Appl., 335 (2007), 20.  doi: 10.1016/j.jmaa.2007.01.042.  Google Scholar

[14]

S. Chen and Z. Tan, Optimal interior partial regularity for nonlinear elliptic systems,, Discrete Cont Dyn-A, 27 (2010), 981.  doi: 10.3934/dcds.2010.27.981.  Google Scholar

[15]

F. Duzaar, J.F. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth,, Ann. Mat. Pura Appl., 184 (2005), 421.  doi: 10.1007/s10231-004-0117-5.  Google Scholar

[16]

F. Duzaar and G. Mingione, Regularity for degenerate elliptic problems via $p$-harmonic approximation,, Ann. Inst. Henri Poincaré, 21 (2004), 735.  doi: 10.1016/j.anihpc.2003.09.003.  Google Scholar

[17]

L. Capogna, Regularity for quasilinear equation and 1-quasiconformal maps in Carnot groups,, Math. Ann., 313 (1999), 263.  doi: 10.1007/s002080050261.  Google Scholar

[18]

L. Capogna and N.Garofalo, Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type,, J. Eur. Math. Soc., 5 (2003), 1.  doi: 10.1007/s100970200043.  Google Scholar

[19]

E. Shores, Hypoellipticity for linear degenerate elliptic systems in Carnot groups and applications,, p27. arXiv: math. AP/ 0502569., (0502).   Google Scholar

[20]

A. Föglein, Partial regularity results for subelliptic systems in the Heisenberg group,, Cacl Var Partial Dif., 32 (2008), 25.  doi: 10.1007/s00526-007-0127-4.  Google Scholar

[21]

J. Wang and P. Niu, Optimal Partial regularity for weak solutions of nonlinear sub-elliptic systems in Carnot groups,, Nonlinear Anal., 72 (2010), 4162.  doi: 10.1016/j.na.2010.01.048.  Google Scholar

[22]

G. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups,, Ark. Mat., 13 (1975), 161.   Google Scholar

[23]

D. Jerison, The poincaré inequality for vector fields satisfying Hörmander's condition,, Duke Math. J., 53 (1986), 503.  doi: 10.1215/S0012-7094-86-05329-9.  Google Scholar

[24]

N. Garofalo and D. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces,, Comm. Pure Appl. Math., 49 (1996), 1081.  doi: 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A.  Google Scholar

[25]

M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth,, Ann. Mat. Pura Appl. IV. Ser., 175 (1998), 141.  doi: 10.1007/BF01783679.  Google Scholar

[26]

E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case $1 < p < 2$,, J. Math. Anal. Appl., 140 (1989), 115.  doi: 10.1016/0022-247X(89)90098-X.  Google Scholar

[1]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[2]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[3]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[4]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[5]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[6]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[7]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[10]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[11]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[12]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[16]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[17]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[18]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[19]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[20]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]