January  2013, 33(1): 345-357. doi: 10.3934/dcds.2013.33.345

Instability of periodic minimals

1. 

Departamento de Matematica Aplicada, Facultad de Ciencias, Universidad de Granada, E-18071, Granada, Spain

Received  September 2011 Revised  December 2011 Published  September 2012

We consider second-order Euler-Lagrange systems which are periodic in time. Their periodic solutions may be characterized as the stationary points of an associated action functional, and we study the dynamical implications of minimizing the action. Examples are well-known of stable periodic minimizers, but instability always holds for periodic solutions which are minimal in the sense of Aubry-Mather.
Citation: Antonio J. Ureña. Instability of periodic minimals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 345-357. doi: 10.3934/dcds.2013.33.345
References:
[1]

S. V. Bolotin and V. V. Kozlov, Asymptotic solutions of the equations of dynamics,, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 102 (1980), 84. Google Scholar

[2]

C. Carathéodory, "Calculus of Variations and Partial Differential Equations ofthe First Order,", Chelsea, (1989). Google Scholar

[3]

E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions,, J. Dynam. Differential Equations, 6 (1994), 631. doi: 10.1007/BF02218851. Google Scholar

[4]

P. Hagedorn, Die Umkehrung der Stabilitätssätze von Lagrange-Dirichlet und Routh,, Arch. Rational Mech. Anal., 42 (1971), 281. doi: 10.1007/BF00282334. Google Scholar

[5]

P. Hagedorn and J. Mawhin, A simple variational approach to a converse of the Lagrange-Dirichlet theorem,, Arch. Rational Mech. Anal., 120 (1992), 327. doi: 10.1007/BF00380318. Google Scholar

[6]

J. N. Mather, Variational construction of orbits of twist diffeomorphisms,, J. Amer. Math. Soc., 4 (1991), 207. doi: 10.1090/S0894-0347-1991-1080112-5. Google Scholar

[7]

J. Moser, "Selected Chapters in the Calculus of Variations,", Lecture notes by Oliver Knill. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, (2003). Google Scholar

[8]

R. Ortega, The number of stable periodic solutions of time-dependentHamiltonian systems with one degree of freedom,, Ergodic TheoryDynam. Systems, 18 (1998), 1007. doi: 10.1017/S0143385798108362. Google Scholar

[9]

R. Ortega, Instability of periodic solutions obtained by minimization,, 'The first 60 years of Nonlinear Analysis of Jean Mawhin', (2004), 189. Google Scholar

[10]

P. H. Rabinowitz, Heteroclinics for a reversible Hamiltonian system,, Ergodic Theory Dynam. Systems, 14 (1994), 817. doi: 10.1017/S0143385700008178. Google Scholar

[11]

P. H. Rabinowitz, A note on a class of reversibleHamiltonian systems,, Adv. Nonlinear Stud., 9 (2009), 815. Google Scholar

[12]

A. J. Ureña, Isolated periodic minima are unstable,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 877. Google Scholar

[13]

A. J. Ureña, All periodic minimizers are unstable,, Arch. Math., 91 (2008), 63. doi: 10.1007/s00013-008-2693-x. Google Scholar

show all references

References:
[1]

S. V. Bolotin and V. V. Kozlov, Asymptotic solutions of the equations of dynamics,, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 102 (1980), 84. Google Scholar

[2]

C. Carathéodory, "Calculus of Variations and Partial Differential Equations ofthe First Order,", Chelsea, (1989). Google Scholar

[3]

E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions,, J. Dynam. Differential Equations, 6 (1994), 631. doi: 10.1007/BF02218851. Google Scholar

[4]

P. Hagedorn, Die Umkehrung der Stabilitätssätze von Lagrange-Dirichlet und Routh,, Arch. Rational Mech. Anal., 42 (1971), 281. doi: 10.1007/BF00282334. Google Scholar

[5]

P. Hagedorn and J. Mawhin, A simple variational approach to a converse of the Lagrange-Dirichlet theorem,, Arch. Rational Mech. Anal., 120 (1992), 327. doi: 10.1007/BF00380318. Google Scholar

[6]

J. N. Mather, Variational construction of orbits of twist diffeomorphisms,, J. Amer. Math. Soc., 4 (1991), 207. doi: 10.1090/S0894-0347-1991-1080112-5. Google Scholar

[7]

J. Moser, "Selected Chapters in the Calculus of Variations,", Lecture notes by Oliver Knill. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, (2003). Google Scholar

[8]

R. Ortega, The number of stable periodic solutions of time-dependentHamiltonian systems with one degree of freedom,, Ergodic TheoryDynam. Systems, 18 (1998), 1007. doi: 10.1017/S0143385798108362. Google Scholar

[9]

R. Ortega, Instability of periodic solutions obtained by minimization,, 'The first 60 years of Nonlinear Analysis of Jean Mawhin', (2004), 189. Google Scholar

[10]

P. H. Rabinowitz, Heteroclinics for a reversible Hamiltonian system,, Ergodic Theory Dynam. Systems, 14 (1994), 817. doi: 10.1017/S0143385700008178. Google Scholar

[11]

P. H. Rabinowitz, A note on a class of reversibleHamiltonian systems,, Adv. Nonlinear Stud., 9 (2009), 815. Google Scholar

[12]

A. J. Ureña, Isolated periodic minima are unstable,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 877. Google Scholar

[13]

A. J. Ureña, All periodic minimizers are unstable,, Arch. Math., 91 (2008), 63. doi: 10.1007/s00013-008-2693-x. Google Scholar

[1]

Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017

[2]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[3]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[4]

Armands Gritsans, Felix Sadyrbaev. The Nehari solutions and asymmetric minimizers. Conference Publications, 2015, 2015 (special) : 562-568. doi: 10.3934/proc.2015.0562

[5]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[6]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[7]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[8]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[9]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[10]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[11]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[12]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2019171

[13]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[14]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[15]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[16]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[17]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[18]

Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623

[19]

Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579

[20]

Chengming Cao, Xiaoping Yuan. Quasi-periodic solutions for perturbed generalized nonlinear vibrating string equation with singularities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1867-1901. doi: 10.3934/dcds.2017079

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]