-
Previous Article
Uniformity in the Wiener-Wintner theorem for nilsequences
- DCDS Home
- This Issue
-
Next Article
Spreading speeds of $N$-season spatially periodic integro-difference models
Geometric inequalities and symmetry results for elliptic systems
1. | SISSA - International School for Advanced Studies, Sector of Mathematical Analysis Via Bonomea, 265, 34136 Trieste |
  Our setting is very general, and it comprises, as a particular case, a conjecture of De Giorgi for phase separations in $\mathbb{R}^2$.
References:
[1] |
H. Berestycki, T.-C. Lin, J. Wei and C. Zhao, On phase-separation model: Asymptotics and qualitative properties,, preprint., (). Google Scholar |
[2] |
H. Berestycki, S. Terracini, K. Wang and J. Wei, Existence and stability of entire solutions of an elliptic system modeling phase separation,, preprint., (). Google Scholar |
[3] |
S. Dipierro and A. Pinamonti, A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian,, preprint., (). Google Scholar |
[4] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).
|
[5] |
A. Farina, "Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires,", Habilitation à Diriger des Recherches, (2002). Google Scholar |
[6] |
A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741.
|
[7] |
A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems. Recent progress on reaction-diffusion systems and viscosity solutions,, in, (2009), 74.
doi: 10.1142/9789812834744_0004. |
[8] |
M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems,, Calc. Var. and PDE., (). Google Scholar |
[9] |
B. Noris, H. Tavares, S. Terracini and G. Verzin, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267.
|
[10] |
E. H. Lieb and M. Loss, "Analysis,", Graduate Studies in Mathematics, 14 (1997).
|
[11] |
E. Sernesi, "Geometria 2,", Bollati Boringhieri, (1994). Google Scholar |
[12] |
P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.
doi: 10.1007/s002050050081. |
[13] |
P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.
|
[14] |
K. Wang, On the De Giorgi type conjecture for an elliptic system modeling phase separation,, preprint., (). Google Scholar |
show all references
References:
[1] |
H. Berestycki, T.-C. Lin, J. Wei and C. Zhao, On phase-separation model: Asymptotics and qualitative properties,, preprint., (). Google Scholar |
[2] |
H. Berestycki, S. Terracini, K. Wang and J. Wei, Existence and stability of entire solutions of an elliptic system modeling phase separation,, preprint., (). Google Scholar |
[3] |
S. Dipierro and A. Pinamonti, A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian,, preprint., (). Google Scholar |
[4] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).
|
[5] |
A. Farina, "Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires,", Habilitation à Diriger des Recherches, (2002). Google Scholar |
[6] |
A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741.
|
[7] |
A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems. Recent progress on reaction-diffusion systems and viscosity solutions,, in, (2009), 74.
doi: 10.1142/9789812834744_0004. |
[8] |
M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems,, Calc. Var. and PDE., (). Google Scholar |
[9] |
B. Noris, H. Tavares, S. Terracini and G. Verzin, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267.
|
[10] |
E. H. Lieb and M. Loss, "Analysis,", Graduate Studies in Mathematics, 14 (1997).
|
[11] |
E. Sernesi, "Geometria 2,", Bollati Boringhieri, (1994). Google Scholar |
[12] |
P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.
doi: 10.1007/s002050050081. |
[13] |
P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.
|
[14] |
K. Wang, On the De Giorgi type conjecture for an elliptic system modeling phase separation,, preprint., (). Google Scholar |
[1] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[2] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[3] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[4] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[5] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[6] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[7] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[8] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[9] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[10] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[11] |
Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152 |
[12] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[13] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[14] |
Makram Hamouda*, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021001 |
[15] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[16] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[17] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[18] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[19] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[20] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]