August  2013, 33(8): 3473-3496. doi: 10.3934/dcds.2013.33.3473

Geometric inequalities and symmetry results for elliptic systems

1. 

SISSA - International School for Advanced Studies, Sector of Mathematical Analysis Via Bonomea, 265, 34136 Trieste

Received  July 2012 Revised  September 2012 Published  January 2013

We obtain some Poincaré type formulas, that we use, together with the level set analysis, to detect the one-dimensional symmetry of monotone and stable solutions of possibly degenerate elliptic systems of the form \begin{eqnarray*} \left\{ \begin{array}{ll} div\left( a\left( |\nabla u|\right) \nabla u\right) = F_1(u, v), \\ div\left( b\left( |\nabla v|\right) \nabla v\right) = F_2(u, v), \end{array} \right. \end{eqnarray*} where $F ∈ C^{1,1}_{loc}(\mathbb{R}^2)$.
    Our setting is very general, and it comprises, as a particular case, a conjecture of De Giorgi for phase separations in $\mathbb{R}^2$.
Citation: Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473
References:
[1]

H. Berestycki, T.-C. Lin, J. Wei and C. Zhao, On phase-separation model: Asymptotics and qualitative properties,, preprint., ().   Google Scholar

[2]

H. Berestycki, S. Terracini, K. Wang and J. Wei, Existence and stability of entire solutions of an elliptic system modeling phase separation,, preprint., ().   Google Scholar

[3]

S. Dipierro and A. Pinamonti, A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian,, preprint., ().   Google Scholar

[4]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).   Google Scholar

[5]

A. Farina, "Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires,", Habilitation à Diriger des Recherches, (2002).   Google Scholar

[6]

A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741.   Google Scholar

[7]

A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems. Recent progress on reaction-diffusion systems and viscosity solutions,, in, (2009), 74.  doi: 10.1142/9789812834744_0004.  Google Scholar

[8]

M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems,, Calc. Var. and PDE., ().   Google Scholar

[9]

B. Noris, H. Tavares, S. Terracini and G. Verzin, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267.   Google Scholar

[10]

E. H. Lieb and M. Loss, "Analysis,", Graduate Studies in Mathematics, 14 (1997).   Google Scholar

[11]

E. Sernesi, "Geometria 2,", Bollati Boringhieri, (1994).   Google Scholar

[12]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.  doi: 10.1007/s002050050081.  Google Scholar

[13]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.   Google Scholar

[14]

K. Wang, On the De Giorgi type conjecture for an elliptic system modeling phase separation,, preprint., ().   Google Scholar

show all references

References:
[1]

H. Berestycki, T.-C. Lin, J. Wei and C. Zhao, On phase-separation model: Asymptotics and qualitative properties,, preprint., ().   Google Scholar

[2]

H. Berestycki, S. Terracini, K. Wang and J. Wei, Existence and stability of entire solutions of an elliptic system modeling phase separation,, preprint., ().   Google Scholar

[3]

S. Dipierro and A. Pinamonti, A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian,, preprint., ().   Google Scholar

[4]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).   Google Scholar

[5]

A. Farina, "Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires,", Habilitation à Diriger des Recherches, (2002).   Google Scholar

[6]

A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741.   Google Scholar

[7]

A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems. Recent progress on reaction-diffusion systems and viscosity solutions,, in, (2009), 74.  doi: 10.1142/9789812834744_0004.  Google Scholar

[8]

M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems,, Calc. Var. and PDE., ().   Google Scholar

[9]

B. Noris, H. Tavares, S. Terracini and G. Verzin, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267.   Google Scholar

[10]

E. H. Lieb and M. Loss, "Analysis,", Graduate Studies in Mathematics, 14 (1997).   Google Scholar

[11]

E. Sernesi, "Geometria 2,", Bollati Boringhieri, (1994).   Google Scholar

[12]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.  doi: 10.1007/s002050050081.  Google Scholar

[13]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.   Google Scholar

[14]

K. Wang, On the De Giorgi type conjecture for an elliptic system modeling phase separation,, preprint., ().   Google Scholar

[1]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[2]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[6]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[7]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[8]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[9]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[10]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[11]

Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152

[12]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[13]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[14]

Makram Hamouda*, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[19]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[20]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]