-
Previous Article
On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations
- DCDS Home
- This Issue
-
Next Article
Geometric inequalities and symmetry results for elliptic systems
Uniformity in the Wiener-Wintner theorem for nilsequences
1. | KdV Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam |
2. | Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, Netherlands |
References:
[1] |
Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
Ergodic Theory Dynam. Systems, 32 (2012), 341-360. |
[3] |
World Scientific Publishing Co., Inc., River Edge, NJ, 2003. |
[4] |
J. Anal. Math., 110 (2010), 241-269.
doi: 10.1007/s11854-010-0006-3. |
[5] |
Acta Math., 198 (2007), 155-230.
doi: 10.1007/s11511-007-0015-y. |
[6] |
J. Reine Angew. Math., 404 (1990), 140-161.
doi: 10.1515/crll.1990.404.140. |
[7] |
Ph.D. thesis, Ohio State University, 2000. |
[8] |
Proc. Lond. Math. Soc., 102 (2011), 801-842.
doi: 10.1112/plms/pdq037. |
[9] |
Proc. Amer. Math. Soc., 137 (2009), 1363-1369.
doi: 10.1090/S0002-9939-08-09614-7. |
[10] |
Math. Ann., 245 (1979), 185-197.
doi: 10.1007/BF01673506. |
[11] |
J. Anal. Math., 117 (2012), 133-186.
doi: 10.1007/s11854-012-0018-2. |
[12] |
Ergodic Theory Dynam. Systems, 26 (2006), 1061-1071.
doi: 10.1017/S0143385706000204. |
[13] |
M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981. |
[14] |
Ann. of Math., 171 (2010), 1753-1850.
doi: 10.4007/annals.2010.171.1753. |
[15] |
Ann. of Math., 175 (2012), 465-540.
doi: 10.4007/annals.2012.175.2.2. |
[16] |
Ann. of Math., 176 (2012), 1231-1372.
doi: 10.4007/annals.2012.176.2.11. |
[17] |
Ann. of Math., 161 (2005), 397-488.
doi: 10.4007/annals.2005.161.397. |
[18] |
Ann. Inst. Fourier (Grenoble), 58 (2008), 1407-1453. |
[19] |
J. Anal. Math., 108 (2009), 219-276.
doi: 10.1007/s11854-009-0024-1. |
[20] |
Adv. Math., 224 (2010), 103-129.
doi: 10.1016/j.aim.2009.11.009. |
[21] |
preprint, (2012), arXiv:1203.3778. Google Scholar |
[22] |
Second edition, Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, Cambridge, 1985. |
[23] |
Israel J. Math., 129 (2002), 29-60. See http://www.math.osu.edu/ leibman.1/preprints/PolMapG-err.pdf for erratum.
doi: 10.1007/BF02773152. |
[24] |
Israel J. Math., 146 (2005), 303-315.
doi: 10.1007/BF02773538. |
[25] |
Ergodic Theory Dynam. Systems, 25 (2005), 201-213.
doi: 10.1017/S0143385704000215. |
[26] |
Comm. Math. Phys., 287 (2009), 225-258.
doi: 10.1007/s00220-008-0594-2. |
[27] |
Ergodic Theory Dynam. Systems, 10 (1990), 513-521.
doi: 10.1017/S014338570000571X. |
[28] |
Ergodic Theory Dynam. Systems, 13 (1993), 767-784. |
[29] |
Invent. Math., 146 (2001), 259-295.
doi: 10.1007/s002220100162. |
[30] |
Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13 (1949), 9-32. |
[31] |
J. London Math. Soc., 49 (1994), 493-501.
doi: 10.1112/jlms/49.3.493. |
[32] |
Ergodic Theory Dynam. Systems, 12 (1992), 509-558.
doi: 10.1017/S0143385700006921. |
[33] |
Graduate Studies in Mathematics, 142, American Mathematical Society, Providence, RI, 2012. |
[34] |
Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[35] |
Amer. J. Math., 63 (1941), 415-426. |
[36] |
preprint, 2012, arXiv:1206.0287. Google Scholar |
show all references
References:
[1] |
Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
Ergodic Theory Dynam. Systems, 32 (2012), 341-360. |
[3] |
World Scientific Publishing Co., Inc., River Edge, NJ, 2003. |
[4] |
J. Anal. Math., 110 (2010), 241-269.
doi: 10.1007/s11854-010-0006-3. |
[5] |
Acta Math., 198 (2007), 155-230.
doi: 10.1007/s11511-007-0015-y. |
[6] |
J. Reine Angew. Math., 404 (1990), 140-161.
doi: 10.1515/crll.1990.404.140. |
[7] |
Ph.D. thesis, Ohio State University, 2000. |
[8] |
Proc. Lond. Math. Soc., 102 (2011), 801-842.
doi: 10.1112/plms/pdq037. |
[9] |
Proc. Amer. Math. Soc., 137 (2009), 1363-1369.
doi: 10.1090/S0002-9939-08-09614-7. |
[10] |
Math. Ann., 245 (1979), 185-197.
doi: 10.1007/BF01673506. |
[11] |
J. Anal. Math., 117 (2012), 133-186.
doi: 10.1007/s11854-012-0018-2. |
[12] |
Ergodic Theory Dynam. Systems, 26 (2006), 1061-1071.
doi: 10.1017/S0143385706000204. |
[13] |
M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981. |
[14] |
Ann. of Math., 171 (2010), 1753-1850.
doi: 10.4007/annals.2010.171.1753. |
[15] |
Ann. of Math., 175 (2012), 465-540.
doi: 10.4007/annals.2012.175.2.2. |
[16] |
Ann. of Math., 176 (2012), 1231-1372.
doi: 10.4007/annals.2012.176.2.11. |
[17] |
Ann. of Math., 161 (2005), 397-488.
doi: 10.4007/annals.2005.161.397. |
[18] |
Ann. Inst. Fourier (Grenoble), 58 (2008), 1407-1453. |
[19] |
J. Anal. Math., 108 (2009), 219-276.
doi: 10.1007/s11854-009-0024-1. |
[20] |
Adv. Math., 224 (2010), 103-129.
doi: 10.1016/j.aim.2009.11.009. |
[21] |
preprint, (2012), arXiv:1203.3778. Google Scholar |
[22] |
Second edition, Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, Cambridge, 1985. |
[23] |
Israel J. Math., 129 (2002), 29-60. See http://www.math.osu.edu/ leibman.1/preprints/PolMapG-err.pdf for erratum.
doi: 10.1007/BF02773152. |
[24] |
Israel J. Math., 146 (2005), 303-315.
doi: 10.1007/BF02773538. |
[25] |
Ergodic Theory Dynam. Systems, 25 (2005), 201-213.
doi: 10.1017/S0143385704000215. |
[26] |
Comm. Math. Phys., 287 (2009), 225-258.
doi: 10.1007/s00220-008-0594-2. |
[27] |
Ergodic Theory Dynam. Systems, 10 (1990), 513-521.
doi: 10.1017/S014338570000571X. |
[28] |
Ergodic Theory Dynam. Systems, 13 (1993), 767-784. |
[29] |
Invent. Math., 146 (2001), 259-295.
doi: 10.1007/s002220100162. |
[30] |
Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13 (1949), 9-32. |
[31] |
J. London Math. Soc., 49 (1994), 493-501.
doi: 10.1112/jlms/49.3.493. |
[32] |
Ergodic Theory Dynam. Systems, 12 (1992), 509-558.
doi: 10.1017/S0143385700006921. |
[33] |
Graduate Studies in Mathematics, 142, American Mathematical Society, Providence, RI, 2012. |
[34] |
Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[35] |
Amer. J. Math., 63 (1941), 415-426. |
[36] |
preprint, 2012, arXiv:1206.0287. Google Scholar |
[1] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[2] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[3] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[4] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[5] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[6] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[7] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400 |
[8] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[9] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[10] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[11] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[12] |
Mayte Pérez-Llanos, Juan Pablo Pinasco, Nicolas Saintier. Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations. Networks & Heterogeneous Media, 2021, 16 (2) : 257-281. doi: 10.3934/nhm.2021006 |
[13] |
Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040 |
[14] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[15] |
Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053 |
[16] |
Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021065 |
[17] |
Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059 |
[18] |
Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021080 |
[19] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[20] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]