August  2013, 33(8): 3497-3516. doi: 10.3934/dcds.2013.33.3497

Uniformity in the Wiener-Wintner theorem for nilsequences

1. 

KdV Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam

2. 

Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, Netherlands

Received  May 2012 Revised  October 2012 Published  January 2013

We prove a uniform extension of the Wiener-Wintner theorem for nilsequences due to Host and Kra and a nilsequence extension of the topological Wiener-Wintner theorem due to Assani. Our argument is based on (vertical) Fourier analysis and a Sobolev embedding theorem.
Citation: Tanja Eisner, Pavel Zorin-Kranich. Uniformity in the Wiener-Wintner theorem for nilsequences. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3497-3516. doi: 10.3934/dcds.2013.33.3497
References:
[1]

Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

Ergodic Theory Dynam. Systems, 32 (2012), 341-360.  Google Scholar

[3]

World Scientific Publishing Co., Inc., River Edge, NJ, 2003.  Google Scholar

[4]

J. Anal. Math., 110 (2010), 241-269. doi: 10.1007/s11854-010-0006-3.  Google Scholar

[5]

Acta Math., 198 (2007), 155-230. doi: 10.1007/s11511-007-0015-y.  Google Scholar

[6]

J. Reine Angew. Math., 404 (1990), 140-161. doi: 10.1515/crll.1990.404.140.  Google Scholar

[7]

Ph.D. thesis, Ohio State University, 2000.  Google Scholar

[8]

Proc. Lond. Math. Soc., 102 (2011), 801-842. doi: 10.1112/plms/pdq037.  Google Scholar

[9]

Proc. Amer. Math. Soc., 137 (2009), 1363-1369. doi: 10.1090/S0002-9939-08-09614-7.  Google Scholar

[10]

Math. Ann., 245 (1979), 185-197. doi: 10.1007/BF01673506.  Google Scholar

[11]

J. Anal. Math., 117 (2012), 133-186. doi: 10.1007/s11854-012-0018-2.  Google Scholar

[12]

Ergodic Theory Dynam. Systems, 26 (2006), 1061-1071. doi: 10.1017/S0143385706000204.  Google Scholar

[13]

M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981.  Google Scholar

[14]

Ann. of Math., 171 (2010), 1753-1850. doi: 10.4007/annals.2010.171.1753.  Google Scholar

[15]

Ann. of Math., 175 (2012), 465-540. doi: 10.4007/annals.2012.175.2.2.  Google Scholar

[16]

Ann. of Math., 176 (2012), 1231-1372. doi: 10.4007/annals.2012.176.2.11.  Google Scholar

[17]

Ann. of Math., 161 (2005), 397-488. doi: 10.4007/annals.2005.161.397.  Google Scholar

[18]

Ann. Inst. Fourier (Grenoble), 58 (2008), 1407-1453.  Google Scholar

[19]

J. Anal. Math., 108 (2009), 219-276. doi: 10.1007/s11854-009-0024-1.  Google Scholar

[20]

Adv. Math., 224 (2010), 103-129. doi: 10.1016/j.aim.2009.11.009.  Google Scholar

[21]

preprint, (2012), arXiv:1203.3778. Google Scholar

[22]

Second edition, Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, Cambridge, 1985.  Google Scholar

[23]

Israel J. Math., 129 (2002), 29-60. See http://www.math.osu.edu/ leibman.1/preprints/PolMapG-err.pdf for erratum. doi: 10.1007/BF02773152.  Google Scholar

[24]

Israel J. Math., 146 (2005), 303-315. doi: 10.1007/BF02773538.  Google Scholar

[25]

Ergodic Theory Dynam. Systems, 25 (2005), 201-213. doi: 10.1017/S0143385704000215.  Google Scholar

[26]

Comm. Math. Phys., 287 (2009), 225-258. doi: 10.1007/s00220-008-0594-2.  Google Scholar

[27]

Ergodic Theory Dynam. Systems, 10 (1990), 513-521. doi: 10.1017/S014338570000571X.  Google Scholar

[28]

Ergodic Theory Dynam. Systems, 13 (1993), 767-784.  Google Scholar

[29]

Invent. Math., 146 (2001), 259-295. doi: 10.1007/s002220100162.  Google Scholar

[30]

Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13 (1949), 9-32.  Google Scholar

[31]

J. London Math. Soc., 49 (1994), 493-501. doi: 10.1112/jlms/49.3.493.  Google Scholar

[32]

Ergodic Theory Dynam. Systems, 12 (1992), 509-558. doi: 10.1017/S0143385700006921.  Google Scholar

[33]

Graduate Studies in Mathematics, 142, American Mathematical Society, Providence, RI, 2012.  Google Scholar

[34]

Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[35]

Amer. J. Math., 63 (1941), 415-426.  Google Scholar

[36]

preprint, 2012, arXiv:1206.0287. Google Scholar

show all references

References:
[1]

Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

Ergodic Theory Dynam. Systems, 32 (2012), 341-360.  Google Scholar

[3]

World Scientific Publishing Co., Inc., River Edge, NJ, 2003.  Google Scholar

[4]

J. Anal. Math., 110 (2010), 241-269. doi: 10.1007/s11854-010-0006-3.  Google Scholar

[5]

Acta Math., 198 (2007), 155-230. doi: 10.1007/s11511-007-0015-y.  Google Scholar

[6]

J. Reine Angew. Math., 404 (1990), 140-161. doi: 10.1515/crll.1990.404.140.  Google Scholar

[7]

Ph.D. thesis, Ohio State University, 2000.  Google Scholar

[8]

Proc. Lond. Math. Soc., 102 (2011), 801-842. doi: 10.1112/plms/pdq037.  Google Scholar

[9]

Proc. Amer. Math. Soc., 137 (2009), 1363-1369. doi: 10.1090/S0002-9939-08-09614-7.  Google Scholar

[10]

Math. Ann., 245 (1979), 185-197. doi: 10.1007/BF01673506.  Google Scholar

[11]

J. Anal. Math., 117 (2012), 133-186. doi: 10.1007/s11854-012-0018-2.  Google Scholar

[12]

Ergodic Theory Dynam. Systems, 26 (2006), 1061-1071. doi: 10.1017/S0143385706000204.  Google Scholar

[13]

M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981.  Google Scholar

[14]

Ann. of Math., 171 (2010), 1753-1850. doi: 10.4007/annals.2010.171.1753.  Google Scholar

[15]

Ann. of Math., 175 (2012), 465-540. doi: 10.4007/annals.2012.175.2.2.  Google Scholar

[16]

Ann. of Math., 176 (2012), 1231-1372. doi: 10.4007/annals.2012.176.2.11.  Google Scholar

[17]

Ann. of Math., 161 (2005), 397-488. doi: 10.4007/annals.2005.161.397.  Google Scholar

[18]

Ann. Inst. Fourier (Grenoble), 58 (2008), 1407-1453.  Google Scholar

[19]

J. Anal. Math., 108 (2009), 219-276. doi: 10.1007/s11854-009-0024-1.  Google Scholar

[20]

Adv. Math., 224 (2010), 103-129. doi: 10.1016/j.aim.2009.11.009.  Google Scholar

[21]

preprint, (2012), arXiv:1203.3778. Google Scholar

[22]

Second edition, Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, Cambridge, 1985.  Google Scholar

[23]

Israel J. Math., 129 (2002), 29-60. See http://www.math.osu.edu/ leibman.1/preprints/PolMapG-err.pdf for erratum. doi: 10.1007/BF02773152.  Google Scholar

[24]

Israel J. Math., 146 (2005), 303-315. doi: 10.1007/BF02773538.  Google Scholar

[25]

Ergodic Theory Dynam. Systems, 25 (2005), 201-213. doi: 10.1017/S0143385704000215.  Google Scholar

[26]

Comm. Math. Phys., 287 (2009), 225-258. doi: 10.1007/s00220-008-0594-2.  Google Scholar

[27]

Ergodic Theory Dynam. Systems, 10 (1990), 513-521. doi: 10.1017/S014338570000571X.  Google Scholar

[28]

Ergodic Theory Dynam. Systems, 13 (1993), 767-784.  Google Scholar

[29]

Invent. Math., 146 (2001), 259-295. doi: 10.1007/s002220100162.  Google Scholar

[30]

Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13 (1949), 9-32.  Google Scholar

[31]

J. London Math. Soc., 49 (1994), 493-501. doi: 10.1112/jlms/49.3.493.  Google Scholar

[32]

Ergodic Theory Dynam. Systems, 12 (1992), 509-558. doi: 10.1017/S0143385700006921.  Google Scholar

[33]

Graduate Studies in Mathematics, 142, American Mathematical Society, Providence, RI, 2012.  Google Scholar

[34]

Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[35]

Amer. J. Math., 63 (1941), 415-426.  Google Scholar

[36]

preprint, 2012, arXiv:1206.0287. Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[2]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[3]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[4]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[5]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[6]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[7]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[8]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[9]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[10]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[11]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[12]

Mayte Pérez-Llanos, Juan Pablo Pinasco, Nicolas Saintier. Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations. Networks & Heterogeneous Media, 2021, 16 (2) : 257-281. doi: 10.3934/nhm.2021006

[13]

Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040

[14]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[15]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[16]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065

[17]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059

[18]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

[19]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[20]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]