\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations

Abstract Related Papers Cited by
  • This paper is devoted to the study of the inhomogeneous hyperdissipative Navier-Stokes equations on the whole space $\mathbb{R}^N,N\geq3$. Compared with the classical inhomogeneous Navier-Stokes, the dissipative term $- Δ u$ here is replaced by $D^2u$, where $D$ is a Fourier multiplier whose symbol is $m(\xi)=|\xi|^{\frac{N+2}{4}}$. For arbitrary small positive constants $ε$ and $δ$, global well-posedness is showed for the data $(\rho_0, u_0)$ such that $(ρ_{0} - 1, u_0)∈ H^{\frac{N}{2}+ε} × H^{δ}$ with $\inf_{x\in \mathbb{R}^N}\rho_0>0$. To our best knowledge, this is the first result on the inhomogeneous hyperdissipative Navier-Stokes equations, and it can also be viewed as the high-dimensional generalization of the 2D result for classical inhomogeneous Navier-Stokes equations given by Danchin [Local and global well-posedness results for flows of inhomogeneous viscous fluids. Adv. Differential Equations 9 (2004), 353--386.]
    Mathematics Subject Classification: Primary: 76D03, 76D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 832-881.doi: 10.1002/cpa.20351.

    [2]

    H. Abidi, G. Gui and P. Zhang, On the Wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Arch. Rational Mech. Anal., 204 (2012), 189-230.doi: 10.1007/s00205-011-0473-4.

    [3]

    S.-N. Antontsev, A.-V. Kazhikhov and V.-N. Monakhov, "Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,'' Translated from the Russian, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990.

    [4]

    H. Bahouri, J.-Y. Chemin and R. Danchin, "Fourier Analysis and Nonlinear Partial Differential Equations,'' Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343, Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-16830-7.

    [5]

    J.-M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles non linéaires, Annales Scinentifiques de l'École Normale Supérieure, 14 (1981), 209-246.

    [6]

    J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, in "Phase Space Analysis of Partial Differential Equations,'' Vol. I, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, (2004), 53-135.

    [7]

    J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes, Journal of Differential Equations, 121 (1995), 314-228.doi: 10.1006/jdeq.1995.1131.

    [8]

    R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311-1334.doi: 10.1017/S030821050000295X.

    [9]

    R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids, Adv. Differential Equations, 9 (2004), 353-386.

    [10]

    R. Danchin, The inviscid limit for density-dependent incompressible fluids, Ann. Fac. Sci. Toulouse Math., 15 (2006), 637-688.

    [11]

    R. Danchin, Uniform estimates for transport-diffusion equations, J. Hyperbolic Differ. Equ., 4 (2007), 1-17.doi: 10.1142/S021989160700101X.

    [12]

    B. Desjardins, Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space, Differential Integral Equations, 10 (1997), 587-598.

    [13]

    B. Desjardins, Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations, Differential Integral Equations, 10 (1997), 577-586.

    [14]

    B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational Mech. Anal., 137 (1997), 135-158.

    [15]

    R. J. DiPerna and P.-L. Lions, Ordinary differential equations,transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.doi: 10.1007/BF01393835.

    [16]

    H. Fujita and T. Kato, On the Navier-Stokes initial value problems. I, Arch. Rational Mech. Anal., 16 (1964), 269-315.

    [17]

    G. Gui, J. Huang and P. Zhang, Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable, J. Funct. Anal., 261 (2011), 3181-3210.doi: 10.1016/j.jfa.2011.07.026.

    [18]

    G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity, Chin. Ann. Math. Ser. B, 30 (2009), 607-630.doi: 10.1007/s11401-009-0027-3.

    [19]

    S. Itoh and A. Tani, Solvability of nonstationary problems for nonhomogeneous incompressible fluids and the convergence with vanishing viscosity, Tokyo Joural of Mathematics, 22 (1999), 17-42.doi: 10.3836/tjm/1270041610.

    [20]

    N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal., 12 (2002), 355-379.doi: 10.1007/s00039-002-8250-z.

    [21]

    O. Ladyzhenskaja and V. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids, Journal of Soviet Mathematics, 9 (1978), 697-749.

    [22]

    P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,'' Oxford Lecture Series in Mathematics and its Applications, 3, Oxford University Press, The Clarendon Press, Oxford University Press, New York, 1996.

    [23]

    T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal. PDE, 2 (2009), 361-366.doi: 10.2140/apde.2009.2.361.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return