August  2013, 33(8): 3517-3541. doi: 10.3934/dcds.2013.33.3517

On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations

1. 

Department of Mathematics, Zhejiang University, Hangzhou 310027

2. 

Department of Mathematics, Zhejiang University, Hangzhou, 310027, China

Received  September 2012 Revised  November 2012 Published  January 2013

This paper is devoted to the study of the inhomogeneous hyperdissipative Navier-Stokes equations on the whole space $\mathbb{R}^N,N\geq3$. Compared with the classical inhomogeneous Navier-Stokes, the dissipative term $- Δ u$ here is replaced by $D^2u$, where $D$ is a Fourier multiplier whose symbol is $m(\xi)=|\xi|^{\frac{N+2}{4}}$. For arbitrary small positive constants $ε$ and $δ$, global well-posedness is showed for the data $(\rho_0, u_0)$ such that $(ρ_{0} - 1, u_0)∈ H^{\frac{N}{2}+ε} × H^{δ}$ with $\inf_{x\in \mathbb{R}^N}\rho_0>0$. To our best knowledge, this is the first result on the inhomogeneous hyperdissipative Navier-Stokes equations, and it can also be viewed as the high-dimensional generalization of the 2D result for classical inhomogeneous Navier-Stokes equations given by Danchin [Local and global well-posedness results for flows of inhomogeneous viscous fluids. Adv. Differential Equations 9 (2004), 353--386.]
Citation: Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517
References:
[1]

H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations,, Comm. Pure Appl. Math., 64 (2011), 832. doi: 10.1002/cpa.20351. Google Scholar

[2]

H. Abidi, G. Gui and P. Zhang, On the Wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces,, Arch. Rational Mech. Anal., 204 (2012), 189. doi: 10.1007/s00205-011-0473-4. Google Scholar

[3]

S.-N. Antontsev, A.-V. Kazhikhov and V.-N. Monakhov, "Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,'' Translated from the Russian,, Studies in Mathematics and its Applications, 22 (1990). Google Scholar

[4]

H. Bahouri, J.-Y. Chemin and R. Danchin, "Fourier Analysis and Nonlinear Partial Differential Equations,'', Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343 (2011). doi: 10.1007/978-3-642-16830-7. Google Scholar

[5]

J.-M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles non linéaires,, Annales Scinentifiques de l'École Normale Supérieure, 14 (1981), 209. Google Scholar

[6]

J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, in "Phase Space Analysis of Partial Differential Equations,'', Vol. I, (2004), 53. Google Scholar

[7]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes,, Journal of Differential Equations, 121 (1995), 314. doi: 10.1006/jdeq.1995.1131. Google Scholar

[8]

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311. doi: 10.1017/S030821050000295X. Google Scholar

[9]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353. Google Scholar

[10]

R. Danchin, The inviscid limit for density-dependent incompressible fluids,, Ann. Fac. Sci. Toulouse Math., 15 (2006), 637. Google Scholar

[11]

R. Danchin, Uniform estimates for transport-diffusion equations,, J. Hyperbolic Differ. Equ., 4 (2007), 1. doi: 10.1142/S021989160700101X. Google Scholar

[12]

B. Desjardins, Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space,, Differential Integral Equations, 10 (1997), 587. Google Scholar

[13]

B. Desjardins, Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations,, Differential Integral Equations, 10 (1997), 577. Google Scholar

[14]

B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids,, Arch. Rational Mech. Anal., 137 (1997), 135. Google Scholar

[15]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations,transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[16]

H. Fujita and T. Kato, On the Navier-Stokes initial value problems. I,, Arch. Rational Mech. Anal., 16 (1964), 269. Google Scholar

[17]

G. Gui, J. Huang and P. Zhang, Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable,, J. Funct. Anal., 261 (2011), 3181. doi: 10.1016/j.jfa.2011.07.026. Google Scholar

[18]

G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity,, Chin. Ann. Math. Ser. B, 30 (2009), 607. doi: 10.1007/s11401-009-0027-3. Google Scholar

[19]

S. Itoh and A. Tani, Solvability of nonstationary problems for nonhomogeneous incompressible fluids and the convergence with vanishing viscosity,, Tokyo Joural of Mathematics, 22 (1999), 17. doi: 10.3836/tjm/1270041610. Google Scholar

[20]

N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355. doi: 10.1007/s00039-002-8250-z. Google Scholar

[21]

O. Ladyzhenskaja and V. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids,, Journal of Soviet Mathematics, 9 (1978), 697. Google Scholar

[22]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,'', Oxford Lecture Series in Mathematics and its Applications, 3 (1996). Google Scholar

[23]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361. doi: 10.2140/apde.2009.2.361. Google Scholar

show all references

References:
[1]

H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations,, Comm. Pure Appl. Math., 64 (2011), 832. doi: 10.1002/cpa.20351. Google Scholar

[2]

H. Abidi, G. Gui and P. Zhang, On the Wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces,, Arch. Rational Mech. Anal., 204 (2012), 189. doi: 10.1007/s00205-011-0473-4. Google Scholar

[3]

S.-N. Antontsev, A.-V. Kazhikhov and V.-N. Monakhov, "Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,'' Translated from the Russian,, Studies in Mathematics and its Applications, 22 (1990). Google Scholar

[4]

H. Bahouri, J.-Y. Chemin and R. Danchin, "Fourier Analysis and Nonlinear Partial Differential Equations,'', Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343 (2011). doi: 10.1007/978-3-642-16830-7. Google Scholar

[5]

J.-M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles non linéaires,, Annales Scinentifiques de l'École Normale Supérieure, 14 (1981), 209. Google Scholar

[6]

J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, in "Phase Space Analysis of Partial Differential Equations,'', Vol. I, (2004), 53. Google Scholar

[7]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes,, Journal of Differential Equations, 121 (1995), 314. doi: 10.1006/jdeq.1995.1131. Google Scholar

[8]

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311. doi: 10.1017/S030821050000295X. Google Scholar

[9]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353. Google Scholar

[10]

R. Danchin, The inviscid limit for density-dependent incompressible fluids,, Ann. Fac. Sci. Toulouse Math., 15 (2006), 637. Google Scholar

[11]

R. Danchin, Uniform estimates for transport-diffusion equations,, J. Hyperbolic Differ. Equ., 4 (2007), 1. doi: 10.1142/S021989160700101X. Google Scholar

[12]

B. Desjardins, Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space,, Differential Integral Equations, 10 (1997), 587. Google Scholar

[13]

B. Desjardins, Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations,, Differential Integral Equations, 10 (1997), 577. Google Scholar

[14]

B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids,, Arch. Rational Mech. Anal., 137 (1997), 135. Google Scholar

[15]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations,transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[16]

H. Fujita and T. Kato, On the Navier-Stokes initial value problems. I,, Arch. Rational Mech. Anal., 16 (1964), 269. Google Scholar

[17]

G. Gui, J. Huang and P. Zhang, Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable,, J. Funct. Anal., 261 (2011), 3181. doi: 10.1016/j.jfa.2011.07.026. Google Scholar

[18]

G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity,, Chin. Ann. Math. Ser. B, 30 (2009), 607. doi: 10.1007/s11401-009-0027-3. Google Scholar

[19]

S. Itoh and A. Tani, Solvability of nonstationary problems for nonhomogeneous incompressible fluids and the convergence with vanishing viscosity,, Tokyo Joural of Mathematics, 22 (1999), 17. doi: 10.3836/tjm/1270041610. Google Scholar

[20]

N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355. doi: 10.1007/s00039-002-8250-z. Google Scholar

[21]

O. Ladyzhenskaja and V. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids,, Journal of Soviet Mathematics, 9 (1978), 697. Google Scholar

[22]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,'', Oxford Lecture Series in Mathematics and its Applications, 3 (1996). Google Scholar

[23]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361. doi: 10.2140/apde.2009.2.361. Google Scholar

[1]

Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237

[2]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[3]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

[4]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[5]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217

[6]

Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199

[7]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[8]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[9]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079

[10]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[11]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[12]

Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215

[13]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[14]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[15]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[16]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[17]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[18]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[19]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

[20]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]