-
Previous Article
Discretization of dynamical systems with first integrals
- DCDS Home
- This Issue
-
Next Article
Uniformity in the Wiener-Wintner theorem for nilsequences
On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations
1. | Department of Mathematics, Zhejiang University, Hangzhou 310027 |
2. | Department of Mathematics, Zhejiang University, Hangzhou, 310027, China |
References:
[1] |
H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations,, Comm. Pure Appl. Math., 64 (2011), 832.
doi: 10.1002/cpa.20351. |
[2] |
H. Abidi, G. Gui and P. Zhang, On the Wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces,, Arch. Rational Mech. Anal., 204 (2012), 189.
doi: 10.1007/s00205-011-0473-4. |
[3] |
S.-N. Antontsev, A.-V. Kazhikhov and V.-N. Monakhov, "Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,'' Translated from the Russian,, Studies in Mathematics and its Applications, 22 (1990).
|
[4] |
H. Bahouri, J.-Y. Chemin and R. Danchin, "Fourier Analysis and Nonlinear Partial Differential Equations,'', Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343 (2011).
doi: 10.1007/978-3-642-16830-7. |
[5] |
J.-M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles non linéaires,, Annales Scinentifiques de l'École Normale Supérieure, 14 (1981), 209.
|
[6] |
J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, in "Phase Space Analysis of Partial Differential Equations,'', Vol. I, (2004), 53.
|
[7] |
J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes,, Journal of Differential Equations, 121 (1995), 314.
doi: 10.1006/jdeq.1995.1131. |
[8] |
R. Danchin, Density-dependent incompressible viscous fluids in critical spaces,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311.
doi: 10.1017/S030821050000295X. |
[9] |
R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353.
|
[10] |
R. Danchin, The inviscid limit for density-dependent incompressible fluids,, Ann. Fac. Sci. Toulouse Math., 15 (2006), 637.
|
[11] |
R. Danchin, Uniform estimates for transport-diffusion equations,, J. Hyperbolic Differ. Equ., 4 (2007), 1.
doi: 10.1142/S021989160700101X. |
[12] |
B. Desjardins, Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space,, Differential Integral Equations, 10 (1997), 587.
|
[13] |
B. Desjardins, Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations,, Differential Integral Equations, 10 (1997), 577.
|
[14] |
B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids,, Arch. Rational Mech. Anal., 137 (1997), 135. Google Scholar |
[15] |
R. J. DiPerna and P.-L. Lions, Ordinary differential equations,transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.
doi: 10.1007/BF01393835. |
[16] |
H. Fujita and T. Kato, On the Navier-Stokes initial value problems. I,, Arch. Rational Mech. Anal., 16 (1964), 269.
|
[17] |
G. Gui, J. Huang and P. Zhang, Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable,, J. Funct. Anal., 261 (2011), 3181.
doi: 10.1016/j.jfa.2011.07.026. |
[18] |
G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity,, Chin. Ann. Math. Ser. B, 30 (2009), 607.
doi: 10.1007/s11401-009-0027-3. |
[19] |
S. Itoh and A. Tani, Solvability of nonstationary problems for nonhomogeneous incompressible fluids and the convergence with vanishing viscosity,, Tokyo Joural of Mathematics, 22 (1999), 17.
doi: 10.3836/tjm/1270041610. |
[20] |
N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.
doi: 10.1007/s00039-002-8250-z. |
[21] |
O. Ladyzhenskaja and V. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids,, Journal of Soviet Mathematics, 9 (1978), 697.
|
[22] |
P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,'', Oxford Lecture Series in Mathematics and its Applications, 3 (1996).
|
[23] |
T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.
doi: 10.2140/apde.2009.2.361. |
show all references
References:
[1] |
H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations,, Comm. Pure Appl. Math., 64 (2011), 832.
doi: 10.1002/cpa.20351. |
[2] |
H. Abidi, G. Gui and P. Zhang, On the Wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces,, Arch. Rational Mech. Anal., 204 (2012), 189.
doi: 10.1007/s00205-011-0473-4. |
[3] |
S.-N. Antontsev, A.-V. Kazhikhov and V.-N. Monakhov, "Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,'' Translated from the Russian,, Studies in Mathematics and its Applications, 22 (1990).
|
[4] |
H. Bahouri, J.-Y. Chemin and R. Danchin, "Fourier Analysis and Nonlinear Partial Differential Equations,'', Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343 (2011).
doi: 10.1007/978-3-642-16830-7. |
[5] |
J.-M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles non linéaires,, Annales Scinentifiques de l'École Normale Supérieure, 14 (1981), 209.
|
[6] |
J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, in "Phase Space Analysis of Partial Differential Equations,'', Vol. I, (2004), 53.
|
[7] |
J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes,, Journal of Differential Equations, 121 (1995), 314.
doi: 10.1006/jdeq.1995.1131. |
[8] |
R. Danchin, Density-dependent incompressible viscous fluids in critical spaces,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311.
doi: 10.1017/S030821050000295X. |
[9] |
R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353.
|
[10] |
R. Danchin, The inviscid limit for density-dependent incompressible fluids,, Ann. Fac. Sci. Toulouse Math., 15 (2006), 637.
|
[11] |
R. Danchin, Uniform estimates for transport-diffusion equations,, J. Hyperbolic Differ. Equ., 4 (2007), 1.
doi: 10.1142/S021989160700101X. |
[12] |
B. Desjardins, Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space,, Differential Integral Equations, 10 (1997), 587.
|
[13] |
B. Desjardins, Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations,, Differential Integral Equations, 10 (1997), 577.
|
[14] |
B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids,, Arch. Rational Mech. Anal., 137 (1997), 135. Google Scholar |
[15] |
R. J. DiPerna and P.-L. Lions, Ordinary differential equations,transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.
doi: 10.1007/BF01393835. |
[16] |
H. Fujita and T. Kato, On the Navier-Stokes initial value problems. I,, Arch. Rational Mech. Anal., 16 (1964), 269.
|
[17] |
G. Gui, J. Huang and P. Zhang, Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable,, J. Funct. Anal., 261 (2011), 3181.
doi: 10.1016/j.jfa.2011.07.026. |
[18] |
G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity,, Chin. Ann. Math. Ser. B, 30 (2009), 607.
doi: 10.1007/s11401-009-0027-3. |
[19] |
S. Itoh and A. Tani, Solvability of nonstationary problems for nonhomogeneous incompressible fluids and the convergence with vanishing viscosity,, Tokyo Joural of Mathematics, 22 (1999), 17.
doi: 10.3836/tjm/1270041610. |
[20] |
N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.
doi: 10.1007/s00039-002-8250-z. |
[21] |
O. Ladyzhenskaja and V. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids,, Journal of Soviet Mathematics, 9 (1978), 697.
|
[22] |
P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,'', Oxford Lecture Series in Mathematics and its Applications, 3 (1996).
|
[23] |
T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.
doi: 10.2140/apde.2009.2.361. |
[1] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[2] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[3] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[4] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[5] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[6] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[7] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[8] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021005 |
[9] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[10] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[11] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[12] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[13] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[14] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[15] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[16] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[17] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[18] |
Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116 |
[19] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[20] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]