August  2013, 33(8): 3543-3554. doi: 10.3934/dcds.2013.33.3543

Discretization of dynamical systems with first integrals

1. 

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská dolina, 842 48 Bratislava

2. 

Centre for Research and Utilization of Renewable Energy, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic

Received  May 2012 Revised  September 2012 Published  January 2013

We find conditions under which the first integral of an ordinary differential equation becomes a discrete Lyapunov function for its numerical discretization. This result is applied for precluding periodic and bounded orbits under discretization for several cases.
Citation: Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543
References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", $2^{nd}$ edition, 60 (1989).   Google Scholar

[2]

M. Berger and B. Gostiaux, "Differential Geometry: Manifolds, Curves, and Surfaces,", Graduate Texts in Mathematics, 115 (1988).   Google Scholar

[3]

M. Farkas, "Periodic Motions,", Applied Mathematical Sciences, 104 (1994).   Google Scholar

[4]

M. Fečkan, Criteria on the nonexistence of invariant Lipschitz submanifolds for dynamical systems,, J. Differential Equations, 174 (2001), 392.  doi: 10.1006/jdeq.2000.3943.  Google Scholar

[5]

B. M. Garay, The discretized flow on domains of attraction: A structural stability result,, IMA J. Numer. Anal., 18 (1998), 77.  doi: 10.1093/imanum/18.1.77.  Google Scholar

[6]

B. M. Garay and P. E. Kloeden, Discretization near compact invariant sets,, Random & Comput. Dynamics, 5 (1997), 93.   Google Scholar

[7]

R. Goldman, Curvature formulas for implicit curves and surfaces,, Computer Aided Geometric Design, 22 (2005), 632.  doi: 10.1016/j.cagd.2005.06.005.  Google Scholar

[8]

E. Hairer, Ch. Lubich and G. Wanner, "Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,", $2^{nd}$ (2006) edition, 31 (2006).   Google Scholar

[9]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons, (1964).   Google Scholar

[10]

M. W. Hirsch, "Differential Topology,", Graduate Texts in Mathematics, (1976).   Google Scholar

[11]

Y. Li and J. S. Muldowney, On Bendixon's criterion,, J. Differential Equations, 106 (1993), 27.  doi: 10.1006/jdeq.1993.1097.  Google Scholar

[12]

C. Pötzsche and M. Rasmussen, Computation of nonautonomous invariant and inertial manifolds,, Numerische Mathematik, 112 (2009), 449.  doi: 10.1007/s00211-009-0215-9.  Google Scholar

[13]

A. M. Stuart and A. R. Humphries, "Dynamical Systems and Numerical Analysis,", Cambridge Monographs on Applied and Computational Mathematics, 2 (1996).   Google Scholar

show all references

References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", $2^{nd}$ edition, 60 (1989).   Google Scholar

[2]

M. Berger and B. Gostiaux, "Differential Geometry: Manifolds, Curves, and Surfaces,", Graduate Texts in Mathematics, 115 (1988).   Google Scholar

[3]

M. Farkas, "Periodic Motions,", Applied Mathematical Sciences, 104 (1994).   Google Scholar

[4]

M. Fečkan, Criteria on the nonexistence of invariant Lipschitz submanifolds for dynamical systems,, J. Differential Equations, 174 (2001), 392.  doi: 10.1006/jdeq.2000.3943.  Google Scholar

[5]

B. M. Garay, The discretized flow on domains of attraction: A structural stability result,, IMA J. Numer. Anal., 18 (1998), 77.  doi: 10.1093/imanum/18.1.77.  Google Scholar

[6]

B. M. Garay and P. E. Kloeden, Discretization near compact invariant sets,, Random & Comput. Dynamics, 5 (1997), 93.   Google Scholar

[7]

R. Goldman, Curvature formulas for implicit curves and surfaces,, Computer Aided Geometric Design, 22 (2005), 632.  doi: 10.1016/j.cagd.2005.06.005.  Google Scholar

[8]

E. Hairer, Ch. Lubich and G. Wanner, "Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,", $2^{nd}$ (2006) edition, 31 (2006).   Google Scholar

[9]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons, (1964).   Google Scholar

[10]

M. W. Hirsch, "Differential Topology,", Graduate Texts in Mathematics, (1976).   Google Scholar

[11]

Y. Li and J. S. Muldowney, On Bendixon's criterion,, J. Differential Equations, 106 (1993), 27.  doi: 10.1006/jdeq.1993.1097.  Google Scholar

[12]

C. Pötzsche and M. Rasmussen, Computation of nonautonomous invariant and inertial manifolds,, Numerische Mathematik, 112 (2009), 449.  doi: 10.1007/s00211-009-0215-9.  Google Scholar

[13]

A. M. Stuart and A. R. Humphries, "Dynamical Systems and Numerical Analysis,", Cambridge Monographs on Applied and Computational Mathematics, 2 (1996).   Google Scholar

[1]

Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265

[2]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[3]

Yves Achdou, Fabio Camilli, Lucilla Corrias. On numerical approximation of the Hamilton-Jacobi-transport system arising in high frequency approximations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 629-650. doi: 10.3934/dcdsb.2014.19.629

[4]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[5]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[6]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[7]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[8]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[9]

Zhongying Chen, Bin Wu, Yuesheng Xu. Fast numerical collocation solutions of integral equations. Communications on Pure & Applied Analysis, 2007, 6 (3) : 643-666. doi: 10.3934/cpaa.2007.6.643

[10]

Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks & Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263

[11]

Santiago Montaner, Arnaud Münch. Approximation of controls for linear wave equations: A first order mixed formulation. Mathematical Control & Related Fields, 2019, 9 (4) : 729-758. doi: 10.3934/mcrf.2019030

[12]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[13]

Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133

[14]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[15]

Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, Filippo Santambrogio. Numerical approximation of continuous traffic congestion equilibria. Networks & Heterogeneous Media, 2009, 4 (3) : 605-623. doi: 10.3934/nhm.2009.4.605

[16]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[17]

Jong-Shenq Guo, Bo-Chih Huang. Hyperbolic quenching problem with damping in the micro-electro mechanical system device. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 419-434. doi: 10.3934/dcdsb.2014.19.419

[18]

Claude Froeschlé, Massimiliano Guzzo, Elena Lega. First numerical evidence of global Arnold diffusion in quasi-integrable systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 687-698. doi: 10.3934/dcdsb.2005.5.687

[19]

Brittany Froese Hamfeldt. Convergent approximation of non-continuous surfaces of prescribed Gaussian curvature. Communications on Pure & Applied Analysis, 2018, 17 (2) : 671-707. doi: 10.3934/cpaa.2018036

[20]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]