August  2013, 33(8): 3543-3554. doi: 10.3934/dcds.2013.33.3543

Discretization of dynamical systems with first integrals

1. 

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská dolina, 842 48 Bratislava

2. 

Centre for Research and Utilization of Renewable Energy, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic

Received  May 2012 Revised  September 2012 Published  January 2013

We find conditions under which the first integral of an ordinary differential equation becomes a discrete Lyapunov function for its numerical discretization. This result is applied for precluding periodic and bounded orbits under discretization for several cases.
Citation: Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543
References:
[1]

$2^{nd}$ edition, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989.  Google Scholar

[2]

Graduate Texts in Mathematics, 115, Springer-Verlag, New York, 1988.  Google Scholar

[3]

Applied Mathematical Sciences, 104, Springer-Verlag, New York, 1994.  Google Scholar

[4]

J. Differential Equations, 174 (2001), 392-419. doi: 10.1006/jdeq.2000.3943.  Google Scholar

[5]

IMA J. Numer. Anal., 18 (1998), 77-90. doi: 10.1093/imanum/18.1.77.  Google Scholar

[6]

Random & Comput. Dynamics, 5 (1997), 93-123.  Google Scholar

[7]

Computer Aided Geometric Design, 22 (2005), 632-658. doi: 10.1016/j.cagd.2005.06.005.  Google Scholar

[8]

$2^{nd}$ (2006) edition, Springer Series in Computational Mathematics, 31, Springer, Heidelberg, 2010.  Google Scholar

[9]

John Wiley & Sons, Inc., New York-London-Sydney, 1964.  Google Scholar

[10]

Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976.  Google Scholar

[11]

J. Differential Equations, 106 (1993), 27-39. doi: 10.1006/jdeq.1993.1097.  Google Scholar

[12]

Numerische Mathematik, 112 (2009), 449-483. doi: 10.1007/s00211-009-0215-9.  Google Scholar

[13]

Cambridge Monographs on Applied and Computational Mathematics, 2, Cambridge Univ. Press, Cambridge, 1996.  Google Scholar

show all references

References:
[1]

$2^{nd}$ edition, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989.  Google Scholar

[2]

Graduate Texts in Mathematics, 115, Springer-Verlag, New York, 1988.  Google Scholar

[3]

Applied Mathematical Sciences, 104, Springer-Verlag, New York, 1994.  Google Scholar

[4]

J. Differential Equations, 174 (2001), 392-419. doi: 10.1006/jdeq.2000.3943.  Google Scholar

[5]

IMA J. Numer. Anal., 18 (1998), 77-90. doi: 10.1093/imanum/18.1.77.  Google Scholar

[6]

Random & Comput. Dynamics, 5 (1997), 93-123.  Google Scholar

[7]

Computer Aided Geometric Design, 22 (2005), 632-658. doi: 10.1016/j.cagd.2005.06.005.  Google Scholar

[8]

$2^{nd}$ (2006) edition, Springer Series in Computational Mathematics, 31, Springer, Heidelberg, 2010.  Google Scholar

[9]

John Wiley & Sons, Inc., New York-London-Sydney, 1964.  Google Scholar

[10]

Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976.  Google Scholar

[11]

J. Differential Equations, 106 (1993), 27-39. doi: 10.1006/jdeq.1993.1097.  Google Scholar

[12]

Numerische Mathematik, 112 (2009), 449-483. doi: 10.1007/s00211-009-0215-9.  Google Scholar

[13]

Cambridge Monographs on Applied and Computational Mathematics, 2, Cambridge Univ. Press, Cambridge, 1996.  Google Scholar

[1]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[2]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[3]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[4]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[5]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[6]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[7]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[8]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[9]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065

[10]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[11]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[12]

Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021039

[13]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[14]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[15]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[16]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[17]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[18]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059

[19]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[20]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]