August  2013, 33(8): 3543-3554. doi: 10.3934/dcds.2013.33.3543

Discretization of dynamical systems with first integrals

1. 

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská dolina, 842 48 Bratislava

2. 

Centre for Research and Utilization of Renewable Energy, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic

Received  May 2012 Revised  September 2012 Published  January 2013

We find conditions under which the first integral of an ordinary differential equation becomes a discrete Lyapunov function for its numerical discretization. This result is applied for precluding periodic and bounded orbits under discretization for several cases.
Citation: Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543
References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", $2^{nd}$ edition, 60 (1989).   Google Scholar

[2]

M. Berger and B. Gostiaux, "Differential Geometry: Manifolds, Curves, and Surfaces,", Graduate Texts in Mathematics, 115 (1988).   Google Scholar

[3]

M. Farkas, "Periodic Motions,", Applied Mathematical Sciences, 104 (1994).   Google Scholar

[4]

M. Fečkan, Criteria on the nonexistence of invariant Lipschitz submanifolds for dynamical systems,, J. Differential Equations, 174 (2001), 392.  doi: 10.1006/jdeq.2000.3943.  Google Scholar

[5]

B. M. Garay, The discretized flow on domains of attraction: A structural stability result,, IMA J. Numer. Anal., 18 (1998), 77.  doi: 10.1093/imanum/18.1.77.  Google Scholar

[6]

B. M. Garay and P. E. Kloeden, Discretization near compact invariant sets,, Random & Comput. Dynamics, 5 (1997), 93.   Google Scholar

[7]

R. Goldman, Curvature formulas for implicit curves and surfaces,, Computer Aided Geometric Design, 22 (2005), 632.  doi: 10.1016/j.cagd.2005.06.005.  Google Scholar

[8]

E. Hairer, Ch. Lubich and G. Wanner, "Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,", $2^{nd}$ (2006) edition, 31 (2006).   Google Scholar

[9]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons, (1964).   Google Scholar

[10]

M. W. Hirsch, "Differential Topology,", Graduate Texts in Mathematics, (1976).   Google Scholar

[11]

Y. Li and J. S. Muldowney, On Bendixon's criterion,, J. Differential Equations, 106 (1993), 27.  doi: 10.1006/jdeq.1993.1097.  Google Scholar

[12]

C. Pötzsche and M. Rasmussen, Computation of nonautonomous invariant and inertial manifolds,, Numerische Mathematik, 112 (2009), 449.  doi: 10.1007/s00211-009-0215-9.  Google Scholar

[13]

A. M. Stuart and A. R. Humphries, "Dynamical Systems and Numerical Analysis,", Cambridge Monographs on Applied and Computational Mathematics, 2 (1996).   Google Scholar

show all references

References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", $2^{nd}$ edition, 60 (1989).   Google Scholar

[2]

M. Berger and B. Gostiaux, "Differential Geometry: Manifolds, Curves, and Surfaces,", Graduate Texts in Mathematics, 115 (1988).   Google Scholar

[3]

M. Farkas, "Periodic Motions,", Applied Mathematical Sciences, 104 (1994).   Google Scholar

[4]

M. Fečkan, Criteria on the nonexistence of invariant Lipschitz submanifolds for dynamical systems,, J. Differential Equations, 174 (2001), 392.  doi: 10.1006/jdeq.2000.3943.  Google Scholar

[5]

B. M. Garay, The discretized flow on domains of attraction: A structural stability result,, IMA J. Numer. Anal., 18 (1998), 77.  doi: 10.1093/imanum/18.1.77.  Google Scholar

[6]

B. M. Garay and P. E. Kloeden, Discretization near compact invariant sets,, Random & Comput. Dynamics, 5 (1997), 93.   Google Scholar

[7]

R. Goldman, Curvature formulas for implicit curves and surfaces,, Computer Aided Geometric Design, 22 (2005), 632.  doi: 10.1016/j.cagd.2005.06.005.  Google Scholar

[8]

E. Hairer, Ch. Lubich and G. Wanner, "Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,", $2^{nd}$ (2006) edition, 31 (2006).   Google Scholar

[9]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons, (1964).   Google Scholar

[10]

M. W. Hirsch, "Differential Topology,", Graduate Texts in Mathematics, (1976).   Google Scholar

[11]

Y. Li and J. S. Muldowney, On Bendixon's criterion,, J. Differential Equations, 106 (1993), 27.  doi: 10.1006/jdeq.1993.1097.  Google Scholar

[12]

C. Pötzsche and M. Rasmussen, Computation of nonautonomous invariant and inertial manifolds,, Numerische Mathematik, 112 (2009), 449.  doi: 10.1007/s00211-009-0215-9.  Google Scholar

[13]

A. M. Stuart and A. R. Humphries, "Dynamical Systems and Numerical Analysis,", Cambridge Monographs on Applied and Computational Mathematics, 2 (1996).   Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[6]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[10]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[19]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[20]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]