\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations

Abstract Related Papers Cited by
  • It is well-known that the existence of traveling wave solutions for reaction-diffusion partial differential equations can be proved by showing the existence of certain heteroclinic orbits for related autonomous planar differential equations. We introduce a method for finding explicit upper and lower bounds of these heteroclinic orbits. In particular, for the classical Fisher-Kolmogorov equation we give rational upper and lower bounds which allow to locate these solutions analytically and with very high accuracy. These results allow one to construct analytical approximate expressions for the traveling wave solutions with a rigorous control of the errors for arbitrary values of the independent variables. These explicit expressions are very simple and tractable for practical purposes. They are constructed with exponential and rational functions.
    Mathematics Subject Classification: 34C37, 35C07, 37C29.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher's equation for a special wave speed, Bull. Math. Biol., 41 (1979), 835-840.doi: 10.1016/S0092-8240(79)80020-8.

    [2]

    D. G. Aronson and H. F. Weinberger, "Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation," Partial Differential Equations and Related Topics (Program, Tulane Univ., New Orleans, La., 1974), 5-49. Lecture Notes in Math., 446, Springer, Berlin, 1975.

    [3]

    R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355-369.

    [4]

    A. Gasull, H. Giacomini and J. Torregrosa, Some results on homoclinic and heteroclinic connections in planar systems, Nonlinearity, 23 (2010), 2977-3001.doi: 10.1088/0951-7715/23/12/001.

    [5]

    A. Goriely, A simple solution to the nonlinear front problem, Phys. Rev. Lett., 75 (1995), 2047-2050.

    [6]

    P. Grindrod, Patterns and Waves, "The Theory and Applications of Reaction-Diffusion Equations," Clarendon Press, 1991.

    [7]

    A. Kolmogorov, I. Petrovskii and N. Piskunov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, in "Selected Works of A. N. Kolmogorov I" (editor, V. M. Tikhomirov), 248-270. Kluwer 1991. Translated by V. M. Volosov from Bull. Moscow Univ., Math. Mech., 1 (1937), 1-25.

    [8]

    A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech., 38 (1969), 279-303.

    [9]

    M. R. Rodrigo and R. M. Miura, Exact and approximate traveling waves of reaction-diffusion systems via a variational approach, Anal. Appl. (Singap.), 9 (2011), 187-199.doi: 10.1142/S0219530511001807.

    [10]

    F. Sánchez-Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations, J. Differential Equations, 117 (1995), 281-319.doi: 10.1006/jdeq.1995.1055.

    [11]

    F. Sánchez-Garduño and P. K. Maini, Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations, J. Math. Biol., 35 (1997), 713-728.doi: 10.1007/s002850050073.

    [12]

    L. A. Segel, Distant sidewalls cause slow amplitude modulation of cellular convection, J. Fluid Mech., 38 (1969), 203-224.

    [13]

    J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230.doi: 10.1137/S0036144599364296.

    [14]

    Y. B. Zeldovich and D. A. Frank-Kamenetskii, A theory of thermal propagation of flame, Acta Physicochimica URSS 9 (1938), 341-350. English Translation: Dynamics of Curved Fronts, editor P. Pelcé, Perspectives in Physics, Academic Press, New York, (1988), 131-140.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return