• Previous Article
    Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities
  • DCDS Home
  • This Issue
  • Next Article
    Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations
August  2013, 33(8): 3583-3597. doi: 10.3934/dcds.2013.33.3583

On the moments of solutions to linear parabolic equations involving the biharmonic operator

1. 

Dipartimento di Matematica del Politecnico, Piazza L. da Vinci 32, Milano, 20133

Received  June 2012 Revised  August 2012 Published  January 2013

We consider the solutions to Cauchy problems for the parabolic equation $u_\tau +\Delta^2u=0$ in $\mathbb{R}_+\times\mathbb{R}^n$, with fast decay initial data. We study the behavior of their moments. This enables us to give a more precise description of the sign-changing behavior of solutions corresponding to positive initial data.
Citation: Filippo Gazzola. On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3583-3597. doi: 10.3934/dcds.2013.33.3583
References:
[1]

G. E. Andrews, R. Askey and R. Roy, "Special Functions," 71 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.

[2]

G. Barbatis, Explicit estimates on the fundamental solution of higher-order parabolic equations with measurable coefficients, J. Diff. Eq., 174 (2001), 442-463. doi: 10.1006/jdeq.2000.3940.

[3]

G. Barbatis and E. B. Davies, Sharp bounds on heat kernels of higher order uniformly elliptic operators, J. Operator Theory, 36 (1996), 179-198.

[4]

E. Berchio, On the sign of solutions to some linear parabolic biharmonic equations, Adv. Diff. Eq., 13 (2008), 959-976.

[5]

G. Caristi and E. Mitidieri, Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data, J. Math. Anal. Appl., 279 (2003), 710-722. doi: 10.1016/S0022-247X(03)00062-3.

[6]

J. W. Cholewa and A. Rodriguez-Bernal, Linear and semilinear higher order parabolic equations in $\mathbb{R}^N2$, Nonlin. Anal., 75 (2012), 194-210. doi: 10.1016/j.na.2011.08.022.

[7]

J. W. Cholewa and A. Rodriguez-Bernal, Dissipative mechanism of a semilinear higher order parabolic equations in $\mathbb{R}^N2$, Nonlin. Anal., 75 (2012), 3510-3530. doi: 10.1016/j.na.2012.01.011.

[8]

J. W. Cholewa and A. Rodriguez-Bernal, On the Cahn-Hilliard equation in $H^1(\mathbb{R}^N)$, to appear in J. Diff. Eq..

[9]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, On the necessary conditions of global existence to a quasilinear inequality in the half-space, C. R. Acad. Sci. Paris, 330 (2000), 93-98. doi: 10.1016/S0764-4442(00)00124-5.

[10]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range, C. R. Acad. Sci. Paris, 335 (2002), 805-810. doi: 10.1016/S1631-073X(02)02567-0.

[11]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range, Adv. Diff. Eq., 9 (2004), 1009-1038.

[12]

S. D. Eidelman, Parabolicheskie sistemy, Izdat. "Nauka", Moscow, (1964).

[13]

A. Ferrero, F. Gazzola and H.-Ch. Grunau, Decay and eventual local positivity for biharmonic parabolic equations, Disc. Cont. Dynam. Syst., 21 (2008), 1129-1157. doi: 10.3934/dcds.2008.21.1129.

[14]

V. A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations: towards Petrovskii-type criterion by blow-up approach, Nonlin. Diff. Eq. Appl., 5 (2009), 597-655. doi: 10.1007/s00030-009-0025-x.

[15]

V. A. Galaktionov and P. J. Harwin, Non-uniqueness and global similarity solutions for a higher-order semilinear parabolic equation, Nonlinearity, 18 (2005), 717-746. doi: 10.1088/0951-7715/18/2/014.

[16]

V. A. Galaktionov and S. I. Pohožaev, Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators, Indiana Univ. Math. J., 51 (2002), 1321-1338. doi: 10.1512/iumj.2002.51.2131.

[17]

V. A. Galaktionov and J. L. Vázquez, A stability technique for evolution partial differential equations. A dynamical systems approach, Progress in Nonlinear Differential Equations and their Applications 56, Boston (MA) etc.: Birkhäuser, (2004). doi: 10.1007/978-1-4612-2050-3.

[18]

V. A. Galaktionov and J. F. Williams, On very singular similarity solutions of a higher-order semilinear parabolic equation, Nonlinearity, 17 (2004), 1075-1099. doi: 10.1088/0951-7715/17/3/017.

[19]

F. Gazzola and H.-Ch. Grunau, Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay, Calc. Var., 30 (2007), 389-415. doi: 10.1007/s00526-007-0096-7.

[20]

F. Gazzola and H.-Ch. Grunau, Eventual local positivity for a biharmonic heat equation in $\mathbb{R}^{N}$, Disc. Cont. Dynam. Syst. S., 1 (2008), 83-87.

[21]

F. Gazzola and H.-Ch. Grunau, Some new properties of biharmonic heat kernels, Nonlinear Analysis, 70 (2009), 2965-2973. doi: 10.1016/j.na.2008.12.039.

[22]

X. Li and R. Wong, Asymptotic behaviour of the fundamental solution to ${\partial u}/{\partial t}=-(-\Delta)^m u$, Proc. Roy. Soc. London A., 441 (1993), 423-432. doi: 10.1098/rspa.1993.0071.

[23]

E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151. doi: 10.1080/03605309308820923.

show all references

References:
[1]

G. E. Andrews, R. Askey and R. Roy, "Special Functions," 71 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.

[2]

G. Barbatis, Explicit estimates on the fundamental solution of higher-order parabolic equations with measurable coefficients, J. Diff. Eq., 174 (2001), 442-463. doi: 10.1006/jdeq.2000.3940.

[3]

G. Barbatis and E. B. Davies, Sharp bounds on heat kernels of higher order uniformly elliptic operators, J. Operator Theory, 36 (1996), 179-198.

[4]

E. Berchio, On the sign of solutions to some linear parabolic biharmonic equations, Adv. Diff. Eq., 13 (2008), 959-976.

[5]

G. Caristi and E. Mitidieri, Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data, J. Math. Anal. Appl., 279 (2003), 710-722. doi: 10.1016/S0022-247X(03)00062-3.

[6]

J. W. Cholewa and A. Rodriguez-Bernal, Linear and semilinear higher order parabolic equations in $\mathbb{R}^N2$, Nonlin. Anal., 75 (2012), 194-210. doi: 10.1016/j.na.2011.08.022.

[7]

J. W. Cholewa and A. Rodriguez-Bernal, Dissipative mechanism of a semilinear higher order parabolic equations in $\mathbb{R}^N2$, Nonlin. Anal., 75 (2012), 3510-3530. doi: 10.1016/j.na.2012.01.011.

[8]

J. W. Cholewa and A. Rodriguez-Bernal, On the Cahn-Hilliard equation in $H^1(\mathbb{R}^N)$, to appear in J. Diff. Eq..

[9]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, On the necessary conditions of global existence to a quasilinear inequality in the half-space, C. R. Acad. Sci. Paris, 330 (2000), 93-98. doi: 10.1016/S0764-4442(00)00124-5.

[10]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range, C. R. Acad. Sci. Paris, 335 (2002), 805-810. doi: 10.1016/S1631-073X(02)02567-0.

[11]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range, Adv. Diff. Eq., 9 (2004), 1009-1038.

[12]

S. D. Eidelman, Parabolicheskie sistemy, Izdat. "Nauka", Moscow, (1964).

[13]

A. Ferrero, F. Gazzola and H.-Ch. Grunau, Decay and eventual local positivity for biharmonic parabolic equations, Disc. Cont. Dynam. Syst., 21 (2008), 1129-1157. doi: 10.3934/dcds.2008.21.1129.

[14]

V. A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations: towards Petrovskii-type criterion by blow-up approach, Nonlin. Diff. Eq. Appl., 5 (2009), 597-655. doi: 10.1007/s00030-009-0025-x.

[15]

V. A. Galaktionov and P. J. Harwin, Non-uniqueness and global similarity solutions for a higher-order semilinear parabolic equation, Nonlinearity, 18 (2005), 717-746. doi: 10.1088/0951-7715/18/2/014.

[16]

V. A. Galaktionov and S. I. Pohožaev, Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators, Indiana Univ. Math. J., 51 (2002), 1321-1338. doi: 10.1512/iumj.2002.51.2131.

[17]

V. A. Galaktionov and J. L. Vázquez, A stability technique for evolution partial differential equations. A dynamical systems approach, Progress in Nonlinear Differential Equations and their Applications 56, Boston (MA) etc.: Birkhäuser, (2004). doi: 10.1007/978-1-4612-2050-3.

[18]

V. A. Galaktionov and J. F. Williams, On very singular similarity solutions of a higher-order semilinear parabolic equation, Nonlinearity, 17 (2004), 1075-1099. doi: 10.1088/0951-7715/17/3/017.

[19]

F. Gazzola and H.-Ch. Grunau, Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay, Calc. Var., 30 (2007), 389-415. doi: 10.1007/s00526-007-0096-7.

[20]

F. Gazzola and H.-Ch. Grunau, Eventual local positivity for a biharmonic heat equation in $\mathbb{R}^{N}$, Disc. Cont. Dynam. Syst. S., 1 (2008), 83-87.

[21]

F. Gazzola and H.-Ch. Grunau, Some new properties of biharmonic heat kernels, Nonlinear Analysis, 70 (2009), 2965-2973. doi: 10.1016/j.na.2008.12.039.

[22]

X. Li and R. Wong, Asymptotic behaviour of the fundamental solution to ${\partial u}/{\partial t}=-(-\Delta)^m u$, Proc. Roy. Soc. London A., 441 (1993), 423-432. doi: 10.1098/rspa.1993.0071.

[23]

E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151. doi: 10.1080/03605309308820923.

[1]

Feliz Minhós. Periodic solutions for some fully nonlinear fourth order differential equations. Conference Publications, 2011, 2011 (Special) : 1068-1077. doi: 10.3934/proc.2011.2011.1068

[2]

John B. Greer, Andrea L. Bertozzi. $H^1$ Solutions of a class of fourth order nonlinear equations for image processing. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 349-366. doi: 10.3934/dcds.2004.10.349

[3]

Craig Cowan. Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter. Communications on Pure and Applied Analysis, 2016, 15 (2) : 519-533. doi: 10.3934/cpaa.2016.15.519

[4]

Takahiro Hashimoto. Existence and nonexistence of nontrivial solutions of some nonlinear fourth order elliptic equations. Conference Publications, 2003, 2003 (Special) : 393-402. doi: 10.3934/proc.2003.2003.393

[5]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[6]

Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure and Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617

[7]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[8]

Alan E. Lindsay. An asymptotic study of blow up multiplicity in fourth order parabolic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 189-215. doi: 10.3934/dcdsb.2014.19.189

[9]

Lili Ju, Xinfeng Liu, Wei Leng. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1667-1687. doi: 10.3934/dcdsb.2014.19.1667

[10]

Yang Liu, Wenke Li. A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4367-4381. doi: 10.3934/dcdss.2021112

[11]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[12]

Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935

[13]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[14]

Feliz Minhós, João Fialho. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Conference Publications, 2013, 2013 (special) : 555-564. doi: 10.3934/proc.2013.2013.555

[15]

Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033

[16]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[17]

Tokushi Sato, Tatsuya Watanabe. Singular positive solutions for a fourth order elliptic problem in $R$. Communications on Pure and Applied Analysis, 2011, 10 (1) : 245-268. doi: 10.3934/cpaa.2011.10.245

[18]

John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291-299. doi: 10.3934/proc.2013.2013.291

[19]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[20]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]