\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the moments of solutions to linear parabolic equations involving the biharmonic operator

Abstract Related Papers Cited by
  • We consider the solutions to Cauchy problems for the parabolic equation $u_\tau +\Delta^2u=0$ in $\mathbb{R}_+\times\mathbb{R}^n$, with fast decay initial data. We study the behavior of their moments. This enables us to give a more precise description of the sign-changing behavior of solutions corresponding to positive initial data.
    Mathematics Subject Classification: 35K30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. E. Andrews, R. Askey and R. Roy, "Special Functions," 71 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.

    [2]

    G. Barbatis, Explicit estimates on the fundamental solution of higher-order parabolic equations with measurable coefficients, J. Diff. Eq., 174 (2001), 442-463.doi: 10.1006/jdeq.2000.3940.

    [3]

    G. Barbatis and E. B. Davies, Sharp bounds on heat kernels of higher order uniformly elliptic operators, J. Operator Theory, 36 (1996), 179-198.

    [4]

    E. Berchio, On the sign of solutions to some linear parabolic biharmonic equations, Adv. Diff. Eq., 13 (2008), 959-976.

    [5]

    G. Caristi and E. Mitidieri, Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data, J. Math. Anal. Appl., 279 (2003), 710-722.doi: 10.1016/S0022-247X(03)00062-3.

    [6]

    J. W. Cholewa and A. Rodriguez-Bernal, Linear and semilinear higher order parabolic equations in $\mathbbR^N$, Nonlin. Anal., 75 (2012), 194-210.doi: 10.1016/j.na.2011.08.022.

    [7]

    J. W. Cholewa and A. Rodriguez-Bernal, Dissipative mechanism of a semilinear higher order parabolic equations in $\mathbbR^N$, Nonlin. Anal., 75 (2012), 3510-3530.doi: 10.1016/j.na.2012.01.011.

    [8]

    J. W. Cholewa and A. Rodriguez-BernalOn the Cahn-Hilliard equation in $H^1(\mathbbR^N)$, to appear in J. Diff. Eq..

    [9]

    Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, On the necessary conditions of global existence to a quasilinear inequality in the half-space, C. R. Acad. Sci. Paris, 330 (2000), 93-98.doi: 10.1016/S0764-4442(00)00124-5.

    [10]

    Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range, C. R. Acad. Sci. Paris, 335 (2002), 805-810.doi: 10.1016/S1631-073X(02)02567-0.

    [11]

    Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range, Adv. Diff. Eq., 9 (2004), 1009-1038.

    [12]

    S. D. Eidelman, Parabolicheskie sistemy, Izdat. "Nauka", Moscow, (1964).

    [13]

    A. Ferrero, F. Gazzola and H.-Ch. Grunau, Decay and eventual local positivity for biharmonic parabolic equations, Disc. Cont. Dynam. Syst., 21 (2008), 1129-1157.doi: 10.3934/dcds.2008.21.1129.

    [14]

    V. A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations: towards Petrovskii-type criterion by blow-up approach, Nonlin. Diff. Eq. Appl., 5 (2009), 597-655.doi: 10.1007/s00030-009-0025-x.

    [15]

    V. A. Galaktionov and P. J. Harwin, Non-uniqueness and global similarity solutions for a higher-order semilinear parabolic equation, Nonlinearity, 18 (2005), 717-746.doi: 10.1088/0951-7715/18/2/014.

    [16]

    V. A. Galaktionov and S. I. Pohožaev, Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators, Indiana Univ. Math. J., 51 (2002), 1321-1338.doi: 10.1512/iumj.2002.51.2131.

    [17]

    V. A. Galaktionov and J. L. Vázquez, A stability technique for evolution partial differential equations. A dynamical systems approach, Progress in Nonlinear Differential Equations and their Applications 56, Boston (MA) etc.: Birkhäuser, (2004).doi: 10.1007/978-1-4612-2050-3.

    [18]

    V. A. Galaktionov and J. F. Williams, On very singular similarity solutions of a higher-order semilinear parabolic equation, Nonlinearity, 17 (2004), 1075-1099.doi: 10.1088/0951-7715/17/3/017.

    [19]

    F. Gazzola and H.-Ch. Grunau, Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay, Calc. Var., 30 (2007), 389-415.doi: 10.1007/s00526-007-0096-7.

    [20]

    F. Gazzola and H.-Ch. Grunau, Eventual local positivity for a biharmonic heat equation in $\mathbbR^n$, Disc. Cont. Dynam. Syst. S., 1 (2008), 83-87.

    [21]

    F. Gazzola and H.-Ch. Grunau, Some new properties of biharmonic heat kernels, Nonlinear Analysis, 70 (2009), 2965-2973.doi: 10.1016/j.na.2008.12.039.

    [22]

    X. Li and R. Wong, Asymptotic behaviour of the fundamental solution to ${\partial u}/{\partial t}=-(-\Delta)^m u$, Proc. Roy. Soc. London A., 441 (1993), 423-432.doi: 10.1098/rspa.1993.0071.

    [23]

    E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151.doi: 10.1080/03605309308820923.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return