-
Previous Article
On Poisson's state-dependent delay
- DCDS Home
- This Issue
-
Next Article
Instability of periodic minimals
Continuation and bifurcation of multi-symmetric solutions in reversible Hamiltonian systems
1. | Department of Pure Mathematics, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium |
References:
[1] |
F. J. Muñoz-Almaraz, E. Freire, J. Galán, E. J. Doedel and A. Vanderbauwhede, Continuation of periodic orbits in conservative and Hamiltonian systems, Physica D, 181 (2003), 1-38.
doi: 10.1016/S0167-2789(03)00097-6. |
[2] |
F. J. Muñoz-Almaraz , E. Freire, J. Galán, and A. Vanderbauwhede, Continuation of Gerver's supereight choreography, Monografias de la Real Academia de Ciencias de Zaragoza, 30 (2006), 95-105. |
[3] |
F. J. Muñoz-Almaraz, E. Freire, J. Galán and A. Vanderbauwhede, Continuation of normal doubly symmetric orbits in conservative reversible systems, Celestial Mechanics & Dynamical Astronomy, 97 (2007), 17-47. |
[4] |
http://www.maia.ub.es/ malmaraz/investigacion/Jaca/jaca.xml. |
show all references
References:
[1] |
F. J. Muñoz-Almaraz, E. Freire, J. Galán, E. J. Doedel and A. Vanderbauwhede, Continuation of periodic orbits in conservative and Hamiltonian systems, Physica D, 181 (2003), 1-38.
doi: 10.1016/S0167-2789(03)00097-6. |
[2] |
F. J. Muñoz-Almaraz , E. Freire, J. Galán, and A. Vanderbauwhede, Continuation of Gerver's supereight choreography, Monografias de la Real Academia de Ciencias de Zaragoza, 30 (2006), 95-105. |
[3] |
F. J. Muñoz-Almaraz, E. Freire, J. Galán and A. Vanderbauwhede, Continuation of normal doubly symmetric orbits in conservative reversible systems, Celestial Mechanics & Dynamical Astronomy, 97 (2007), 17-47. |
[4] |
http://www.maia.ub.es/ malmaraz/investigacion/Jaca/jaca.xml. |
[1] |
S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493 |
[2] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[3] |
Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure and Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703 |
[4] |
Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225 |
[5] |
Lora Billings, Erik M. Bollt, David Morgan, Ira B. Schwartz. Stochastic global bifurcation in perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 123-132. doi: 10.3934/proc.2003.2003.123 |
[6] |
Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51 |
[7] |
Chungen Liu. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 337-355. doi: 10.3934/dcds.2010.27.337 |
[8] |
Duanzhi Zhang. Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2227-2272. doi: 10.3934/dcds.2015.35.2227 |
[9] |
Amadeu Delshams, Pere Gutiérrez. Exponentially small splitting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 757-783. doi: 10.3934/dcds.2004.11.757 |
[10] |
Francesca Alessio, Piero Montecchiari, Andrea Sfecci. Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations. Networks and Heterogeneous Media, 2019, 14 (3) : 567-587. doi: 10.3934/nhm.2019022 |
[11] |
Péter Bálint, Imre Péter Tóth. Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 37-59. doi: 10.3934/dcds.2006.15.37 |
[12] |
Paul H. Rabinowitz. On a class of reversible elliptic systems. Networks and Heterogeneous Media, 2012, 7 (4) : 927-939. doi: 10.3934/nhm.2012.7.927 |
[13] |
Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249 |
[14] |
Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069 |
[15] |
Norimichi Hirano, Zhi-Qiang Wang. Subharmonic solutions for second order Hamiltonian systems. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 467-474. doi: 10.3934/dcds.1998.4.467 |
[16] |
Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059 |
[17] |
Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure and Applied Analysis, 2011, 10 (3) : 937-961. doi: 10.3934/cpaa.2011.10.937 |
[18] |
Jean-Philippe Lessard, Evelyn Sander, Thomas Wanner. Rigorous continuation of bifurcation points in the diblock copolymer equation. Journal of Computational Dynamics, 2017, 4 (1&2) : 71-118. doi: 10.3934/jcd.2017003 |
[19] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047 |
[20] |
Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]