January  2013, 33(1): 359-363. doi: 10.3934/dcds.2013.33.359

Continuation and bifurcation of multi-symmetric solutions in reversible Hamiltonian systems

1. 

Department of Pure Mathematics, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium

Received  August 2011 Revised  February 2012 Published  September 2012

In this paper we discuss some general results on families of symmetric and doubly-symmetric solutions in reversible Hamiltonian systems having several independent first integrals. We describe a set-up for such solutions which allows the application of classical continuation and bifurcation results.
Citation: André Vanderbauwhede. Continuation and bifurcation of multi-symmetric solutions in reversible Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 359-363. doi: 10.3934/dcds.2013.33.359
References:
[1]

F. J. Muñoz-Almaraz, E. Freire, J. Galán, E. J. Doedel and A. Vanderbauwhede, Continuation of periodic orbits in conservative and Hamiltonian systems,, Physica D, 181 (2003), 1.  doi: 10.1016/S0167-2789(03)00097-6.  Google Scholar

[2]

F. J. Muñoz-Almaraz , E. Freire, J. Galán, and A. Vanderbauwhede, Continuation of Gerver's supereight choreography,, Monografias de la Real Academia de Ciencias de Zaragoza, 30 (2006), 95.   Google Scholar

[3]

F. J. Muñoz-Almaraz, E. Freire, J. Galán and A. Vanderbauwhede, Continuation of normal doubly symmetric orbits in conservative reversible systems,, Celestial Mechanics & Dynamical Astronomy, 97 (2007), 17.   Google Scholar

[4]

, http://www.maia.ub.es/ malmaraz/investigacion/Jaca/jaca.xml., ().   Google Scholar

show all references

References:
[1]

F. J. Muñoz-Almaraz, E. Freire, J. Galán, E. J. Doedel and A. Vanderbauwhede, Continuation of periodic orbits in conservative and Hamiltonian systems,, Physica D, 181 (2003), 1.  doi: 10.1016/S0167-2789(03)00097-6.  Google Scholar

[2]

F. J. Muñoz-Almaraz , E. Freire, J. Galán, and A. Vanderbauwhede, Continuation of Gerver's supereight choreography,, Monografias de la Real Academia de Ciencias de Zaragoza, 30 (2006), 95.   Google Scholar

[3]

F. J. Muñoz-Almaraz, E. Freire, J. Galán and A. Vanderbauwhede, Continuation of normal doubly symmetric orbits in conservative reversible systems,, Celestial Mechanics & Dynamical Astronomy, 97 (2007), 17.   Google Scholar

[4]

, http://www.maia.ub.es/ malmaraz/investigacion/Jaca/jaca.xml., ().   Google Scholar

[1]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[2]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[3]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[8]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[11]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[12]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[13]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[14]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[17]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[18]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[19]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[20]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]