August  2013, 33(8): 3671-3705. doi: 10.3934/dcds.2013.33.3671

Branch interactions and long-term dynamics for the diblock copolymer model in one dimension

1. 

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, United States, United States

Received  May 2012 Revised  November 2012 Published  January 2013

Diblock copolymers are a class of materials formed by the reaction of two linear polymers. The different structures taken on by these polymers grant them special properties, which can prove useful in applications such as the development of new adhesives and asphalt additives. We consider a model for the formation of diblock copolymers first proposed by Ohta and Kawasaki [26]. Their model yields a Cahn-Hilliard-like equation, where a nonlocal term is added to the standard Cahn-Hilliard energy. We study the long-term dynamics of this model on one-dimensional domains through a combination of bifurcation theoretic results and numerical simulations. Our results shed light on how the complicated bifurcation behavior of the diblock copolymer model is related to the better known bifurcation structure of the Cahn-Hilliard equation. In addition, we demonstrate that this knowledge can be used to predict the long-term dynamics of solutions originating close to the homogeneous equilibrium. In particular, we show that the periodicity of the long-term limit of such solutions can be predicted by tracking certain secondary bifurcation points in the bifurcation diagram, and that the long-term limit is in general not given by the global energy minimizer.
Citation: Ian Johnson, Evelyn Sander, Thomas Wanner. Branch interactions and long-term dynamics for the diblock copolymer model in one dimension. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3671-3705. doi: 10.3934/dcds.2013.33.3671
References:
[1]

M. Atkins, "Long Term Dynamics of the Diblock Copolymer Model on Higher Dimensional Domains," Master's thesis, George Mason University, 2011.

[2]

M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers, Physical Review A, 41 (1990), 6763-6771.

[3]

F. Bates and G. H. Fredrickson, Block copolymer thermodynamics: Theory and experiment, Annual Review of Physical Chemistry, 41 (1990), 525-557.

[4]

F. Bates and G. H. Fredrickson, Block copolymers - designer soft materials, Physics Today, 52 (1999), 32-38.

[5]

D. Blömker, B. Gawron and T. Wanner, Nucleation in the one-dimensional stochastic Cahn-Hilliard model, Discrete and Continuous Dynamical Systems, 27 (2010), 25-52. doi: 10.3934/dcds.2010.27.25.

[6]

R. Choksi, Mathematical aspects of microphase separation of diblock copolymers, in "Surikaisekikenkyusko Kokyuroku," Vol. 1330, RIMS, Kyoto, (2003), 10-17.

[7]

R. Choksi, M. A. Peletier and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional, SIAM Journal on Applied Mathematics, 69 (2009), 1712-1738. doi: 10.1137/080728809.

[8]

R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers, Journal of Statistical Physics, 113 (2003), 151-176. doi: 10.1023/A:1025722804873.

[9]

D. A. Christian, A. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J. Liu, T. Baumgart and D. E. Discher, Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding, Nature Materials, 8 (2009), 843-849.

[10]

J. P. Desi, H. Edrees, J. Price, E. Sander and T. Wanner, The dynamics of nucleation in stochastic Cahn-Morral systems, SIAM Journal on Applied Dynamical Systems, 10 (2011), 707-743. doi: 10.1137/100801378.

[11]

J. P. Desi, E. Sander and T. Wanner, Complex transient patterns on the disk, Discrete and Continuous Dynamical Systems, 15 (2006), 1049-1078. doi: 10.3934/dcds.2006.15.1049.

[12]

E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems, Congressus Numerantium, 30 (1981), 265-284.

[13]

K. Glasner and R. Choksi, Coarsening and self-organization in dilute diblock copolymer melts and mixtures, Physica D, 238 (2009), 1241-1255. doi: 10.1016/j.physd.2009.04.006.

[14]

M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proceedings of the Royal Society of Edinburgh Sect. A, 125 (1995), 351-370. doi: 10.1017/S0308210500028079.

[15]

T. Hartley and T. Wanner, A semi-implicit spectral method for stochastic nonlocal phase-field models, Discrete and Continuous Dynamical Systems, 25 (2009), 399-429. doi: 10.3934/dcds.2009.25.399.

[16]

X. Kang and X. Ren, Ring pattern solutions of a free boundary problem in diblock copolymer morphology, Physica D, 238 (2009), 645-665. doi: 10.1016/j.physd.2008.12.009.

[17]

N. Q. Le, On the convergence of the Ohta-Kawasaki equation to motion by nonlocal Mullins-Sekerka law, SIAM Journal on Mathematical Analysis, 42 (2010), 1602-1638. doi: 10.1137/090768643.

[18]

S. Mahajan, S. Renker, P. Simon, J. Gutmann, A. Jain, S. Gruner, L. Fetters, G. Coates and U. Wiesner, Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers, Macromolecular Chemistry and Physics, 204 (2003), 1047-1055.

[19]

S. Maier-Paape, K. Mischaikow and T. Wanner, Structure of the attractor of the Cahn-Hilliard equation on a square, International Journal of Bifurcation and Chaos, 17 (2007), 1221-1263. doi: 10.1142/S0218127407017781.

[20]

H. Nakazawa and T. Ohta, Microphase separation of ABC-type triblock copolymers, Macromolecules, 26 (1993), 5503-5511.

[21]

Y. Nishiura, "Far-from-Equilibrium Dynamics,'' Translations of Mathematical Monographs, 209, Iwanami Series in Modern Mathematics, American Mathematical Society, Providence, RI, 2002.

[22]

Y. Nishiura and I. Ohnishi, Rugged landscape with fine structure,, unpublished preprint., (). 

[23]

Y. Nishiura and I. Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers, Physica D, 84 (1995), 31-39. doi: 10.1016/0167-2789(95)00005-O.

[24]

Y. Nishiura and H. Suzuki, Higher dimensional SLEP equation and applications to morphological stability in polymer problems,, SIAM Journal on Mathematical Analysis, 36 (): 916.  doi: 10.1137/S0036141002420157.

[25]

I. Ohnishi, Y. Nishiura, M. Imai and Y. Matsushita, Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term, Chaos, 9 (1999), 329-341. doi: 10.1063/1.166410.

[26]

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.

[27]

X. Ren, Shell structure as solution to a free boundary problem from block copolymer morphology, Discrete and Continuous Dynamical Systems, 24 (2009), 979-1003. doi: 10.3934/dcds.2009.24.979.

[28]

X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem, Interfaces and Free Boundaries, 5 (2003), 193-238. doi: 10.4171/IFB/78.

[29]

X. Ren and J. Wei, Triblock copolymer theory: Free energy, disordered phase and weak segregation, Physica D, 178 (2003), 103-117. doi: 10.1016/S0167-2789(02)00808-4.

[30]

X. Ren and J. Wei, Triblock copolymer theory: Ordered ABC lamellar phase, Journal of Nonlinear Science, 13 (2003), 175-208. doi: 10.1007/s00332-002-0521-1.

[31]

X. Ren and J. Wei, Single droplet pattern in the cylindrical phase of diblock copolymer morphology, Journal of Nonlinear Science, 17 (2007), 471-503. doi: 10.1007/s00332-007-9005-7.

[32]

R. Tamate, K. Yamada, J. Vinals and T. Ohta, Structural rheology of microphase separated diblock copolymers, Journal of the Physical Society of Japan, 77 (2008), 034802.

[33]

P. Tang, F. Qiu, H. Zhang and Y. Yang, Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers, Physical Review E, 69 (2004), 031803.

[34]

R. Wang, J. Hu, Z. Jiang and D. Zhou, Morphology of ABCD tetrablock copolymers predicted by self-consistent field theory, Macromolecular Theory and Simulations, 14 (2005), 256-266.

[35]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems," Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.

show all references

References:
[1]

M. Atkins, "Long Term Dynamics of the Diblock Copolymer Model on Higher Dimensional Domains," Master's thesis, George Mason University, 2011.

[2]

M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers, Physical Review A, 41 (1990), 6763-6771.

[3]

F. Bates and G. H. Fredrickson, Block copolymer thermodynamics: Theory and experiment, Annual Review of Physical Chemistry, 41 (1990), 525-557.

[4]

F. Bates and G. H. Fredrickson, Block copolymers - designer soft materials, Physics Today, 52 (1999), 32-38.

[5]

D. Blömker, B. Gawron and T. Wanner, Nucleation in the one-dimensional stochastic Cahn-Hilliard model, Discrete and Continuous Dynamical Systems, 27 (2010), 25-52. doi: 10.3934/dcds.2010.27.25.

[6]

R. Choksi, Mathematical aspects of microphase separation of diblock copolymers, in "Surikaisekikenkyusko Kokyuroku," Vol. 1330, RIMS, Kyoto, (2003), 10-17.

[7]

R. Choksi, M. A. Peletier and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional, SIAM Journal on Applied Mathematics, 69 (2009), 1712-1738. doi: 10.1137/080728809.

[8]

R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers, Journal of Statistical Physics, 113 (2003), 151-176. doi: 10.1023/A:1025722804873.

[9]

D. A. Christian, A. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J. Liu, T. Baumgart and D. E. Discher, Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding, Nature Materials, 8 (2009), 843-849.

[10]

J. P. Desi, H. Edrees, J. Price, E. Sander and T. Wanner, The dynamics of nucleation in stochastic Cahn-Morral systems, SIAM Journal on Applied Dynamical Systems, 10 (2011), 707-743. doi: 10.1137/100801378.

[11]

J. P. Desi, E. Sander and T. Wanner, Complex transient patterns on the disk, Discrete and Continuous Dynamical Systems, 15 (2006), 1049-1078. doi: 10.3934/dcds.2006.15.1049.

[12]

E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems, Congressus Numerantium, 30 (1981), 265-284.

[13]

K. Glasner and R. Choksi, Coarsening and self-organization in dilute diblock copolymer melts and mixtures, Physica D, 238 (2009), 1241-1255. doi: 10.1016/j.physd.2009.04.006.

[14]

M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proceedings of the Royal Society of Edinburgh Sect. A, 125 (1995), 351-370. doi: 10.1017/S0308210500028079.

[15]

T. Hartley and T. Wanner, A semi-implicit spectral method for stochastic nonlocal phase-field models, Discrete and Continuous Dynamical Systems, 25 (2009), 399-429. doi: 10.3934/dcds.2009.25.399.

[16]

X. Kang and X. Ren, Ring pattern solutions of a free boundary problem in diblock copolymer morphology, Physica D, 238 (2009), 645-665. doi: 10.1016/j.physd.2008.12.009.

[17]

N. Q. Le, On the convergence of the Ohta-Kawasaki equation to motion by nonlocal Mullins-Sekerka law, SIAM Journal on Mathematical Analysis, 42 (2010), 1602-1638. doi: 10.1137/090768643.

[18]

S. Mahajan, S. Renker, P. Simon, J. Gutmann, A. Jain, S. Gruner, L. Fetters, G. Coates and U. Wiesner, Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers, Macromolecular Chemistry and Physics, 204 (2003), 1047-1055.

[19]

S. Maier-Paape, K. Mischaikow and T. Wanner, Structure of the attractor of the Cahn-Hilliard equation on a square, International Journal of Bifurcation and Chaos, 17 (2007), 1221-1263. doi: 10.1142/S0218127407017781.

[20]

H. Nakazawa and T. Ohta, Microphase separation of ABC-type triblock copolymers, Macromolecules, 26 (1993), 5503-5511.

[21]

Y. Nishiura, "Far-from-Equilibrium Dynamics,'' Translations of Mathematical Monographs, 209, Iwanami Series in Modern Mathematics, American Mathematical Society, Providence, RI, 2002.

[22]

Y. Nishiura and I. Ohnishi, Rugged landscape with fine structure,, unpublished preprint., (). 

[23]

Y. Nishiura and I. Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers, Physica D, 84 (1995), 31-39. doi: 10.1016/0167-2789(95)00005-O.

[24]

Y. Nishiura and H. Suzuki, Higher dimensional SLEP equation and applications to morphological stability in polymer problems,, SIAM Journal on Mathematical Analysis, 36 (): 916.  doi: 10.1137/S0036141002420157.

[25]

I. Ohnishi, Y. Nishiura, M. Imai and Y. Matsushita, Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term, Chaos, 9 (1999), 329-341. doi: 10.1063/1.166410.

[26]

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.

[27]

X. Ren, Shell structure as solution to a free boundary problem from block copolymer morphology, Discrete and Continuous Dynamical Systems, 24 (2009), 979-1003. doi: 10.3934/dcds.2009.24.979.

[28]

X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem, Interfaces and Free Boundaries, 5 (2003), 193-238. doi: 10.4171/IFB/78.

[29]

X. Ren and J. Wei, Triblock copolymer theory: Free energy, disordered phase and weak segregation, Physica D, 178 (2003), 103-117. doi: 10.1016/S0167-2789(02)00808-4.

[30]

X. Ren and J. Wei, Triblock copolymer theory: Ordered ABC lamellar phase, Journal of Nonlinear Science, 13 (2003), 175-208. doi: 10.1007/s00332-002-0521-1.

[31]

X. Ren and J. Wei, Single droplet pattern in the cylindrical phase of diblock copolymer morphology, Journal of Nonlinear Science, 17 (2007), 471-503. doi: 10.1007/s00332-007-9005-7.

[32]

R. Tamate, K. Yamada, J. Vinals and T. Ohta, Structural rheology of microphase separated diblock copolymers, Journal of the Physical Society of Japan, 77 (2008), 034802.

[33]

P. Tang, F. Qiu, H. Zhang and Y. Yang, Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers, Physical Review E, 69 (2004), 031803.

[34]

R. Wang, J. Hu, Z. Jiang and D. Zhou, Morphology of ABCD tetrablock copolymers predicted by self-consistent field theory, Macromolecular Theory and Simulations, 14 (2005), 256-266.

[35]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems," Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.

[1]

Georgios T. Kossioris, Georgios E. Zouraris. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1845-1872. doi: 10.3934/dcdsb.2013.18.1845

[2]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

[3]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[4]

Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881

[5]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[6]

Mathias Staudigl, Srinivas Arigapudi, William H. Sandholm. Large deviations and Stochastic stability in Population Games. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021021

[7]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[8]

Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa. A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition. Communications on Pure and Applied Analysis, 2022, 21 (2) : 355-392. doi: 10.3934/cpaa.2021181

[9]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[10]

T. Tachim Medjo. The exponential behavior of a stochastic Cahn-Hilliard-Navier-Stokes model with multiplicative noise. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1117-1138. doi: 10.3934/cpaa.2019054

[11]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations and Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[12]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[13]

Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965

[14]

David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135

[15]

Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025

[16]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[17]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[18]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[19]

T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067

[20]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]