August  2013, 33(8): 3671-3705. doi: 10.3934/dcds.2013.33.3671

Branch interactions and long-term dynamics for the diblock copolymer model in one dimension

1. 

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, United States, United States

Received  May 2012 Revised  November 2012 Published  January 2013

Diblock copolymers are a class of materials formed by the reaction of two linear polymers. The different structures taken on by these polymers grant them special properties, which can prove useful in applications such as the development of new adhesives and asphalt additives. We consider a model for the formation of diblock copolymers first proposed by Ohta and Kawasaki [26]. Their model yields a Cahn-Hilliard-like equation, where a nonlocal term is added to the standard Cahn-Hilliard energy. We study the long-term dynamics of this model on one-dimensional domains through a combination of bifurcation theoretic results and numerical simulations. Our results shed light on how the complicated bifurcation behavior of the diblock copolymer model is related to the better known bifurcation structure of the Cahn-Hilliard equation. In addition, we demonstrate that this knowledge can be used to predict the long-term dynamics of solutions originating close to the homogeneous equilibrium. In particular, we show that the periodicity of the long-term limit of such solutions can be predicted by tracking certain secondary bifurcation points in the bifurcation diagram, and that the long-term limit is in general not given by the global energy minimizer.
Citation: Ian Johnson, Evelyn Sander, Thomas Wanner. Branch interactions and long-term dynamics for the diblock copolymer model in one dimension. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3671-3705. doi: 10.3934/dcds.2013.33.3671
References:
[1]

M. Atkins, "Long Term Dynamics of the Diblock Copolymer Model on Higher Dimensional Domains,", Master's thesis, (2011).   Google Scholar

[2]

M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers,, Physical Review A, 41 (1990), 6763.   Google Scholar

[3]

F. Bates and G. H. Fredrickson, Block copolymer thermodynamics: Theory and experiment,, Annual Review of Physical Chemistry, 41 (1990), 525.   Google Scholar

[4]

F. Bates and G. H. Fredrickson, Block copolymers - designer soft materials,, Physics Today, 52 (1999), 32.   Google Scholar

[5]

D. Blömker, B. Gawron and T. Wanner, Nucleation in the one-dimensional stochastic Cahn-Hilliard model,, Discrete and Continuous Dynamical Systems, 27 (2010), 25.  doi: 10.3934/dcds.2010.27.25.  Google Scholar

[6]

R. Choksi, Mathematical aspects of microphase separation of diblock copolymers,, in, (2003), 10.   Google Scholar

[7]

R. Choksi, M. A. Peletier and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional,, SIAM Journal on Applied Mathematics, 69 (2009), 1712.  doi: 10.1137/080728809.  Google Scholar

[8]

R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers,, Journal of Statistical Physics, 113 (2003), 151.  doi: 10.1023/A:1025722804873.  Google Scholar

[9]

D. A. Christian, A. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J. Liu, T. Baumgart and D. E. Discher, Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding,, Nature Materials, 8 (2009), 843.   Google Scholar

[10]

J. P. Desi, H. Edrees, J. Price, E. Sander and T. Wanner, The dynamics of nucleation in stochastic Cahn-Morral systems,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 707.  doi: 10.1137/100801378.  Google Scholar

[11]

J. P. Desi, E. Sander and T. Wanner, Complex transient patterns on the disk,, Discrete and Continuous Dynamical Systems, 15 (2006), 1049.  doi: 10.3934/dcds.2006.15.1049.  Google Scholar

[12]

E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems,, Congressus Numerantium, 30 (1981), 265.   Google Scholar

[13]

K. Glasner and R. Choksi, Coarsening and self-organization in dilute diblock copolymer melts and mixtures,, Physica D, 238 (2009), 1241.  doi: 10.1016/j.physd.2009.04.006.  Google Scholar

[14]

M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments,, Proceedings of the Royal Society of Edinburgh Sect. A, 125 (1995), 351.  doi: 10.1017/S0308210500028079.  Google Scholar

[15]

T. Hartley and T. Wanner, A semi-implicit spectral method for stochastic nonlocal phase-field models,, Discrete and Continuous Dynamical Systems, 25 (2009), 399.  doi: 10.3934/dcds.2009.25.399.  Google Scholar

[16]

X. Kang and X. Ren, Ring pattern solutions of a free boundary problem in diblock copolymer morphology,, Physica D, 238 (2009), 645.  doi: 10.1016/j.physd.2008.12.009.  Google Scholar

[17]

N. Q. Le, On the convergence of the Ohta-Kawasaki equation to motion by nonlocal Mullins-Sekerka law,, SIAM Journal on Mathematical Analysis, 42 (2010), 1602.  doi: 10.1137/090768643.  Google Scholar

[18]

S. Mahajan, S. Renker, P. Simon, J. Gutmann, A. Jain, S. Gruner, L. Fetters, G. Coates and U. Wiesner, Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,, Macromolecular Chemistry and Physics, 204 (2003), 1047.   Google Scholar

[19]

S. Maier-Paape, K. Mischaikow and T. Wanner, Structure of the attractor of the Cahn-Hilliard equation on a square,, International Journal of Bifurcation and Chaos, 17 (2007), 1221.  doi: 10.1142/S0218127407017781.  Google Scholar

[20]

H. Nakazawa and T. Ohta, Microphase separation of ABC-type triblock copolymers,, Macromolecules, 26 (1993), 5503.   Google Scholar

[21]

Y. Nishiura, "Far-from-Equilibrium Dynamics,'', Translations of Mathematical Monographs, 209 (2002).   Google Scholar

[22]

Y. Nishiura and I. Ohnishi, Rugged landscape with fine structure,, unpublished preprint., ().   Google Scholar

[23]

Y. Nishiura and I. Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers,, Physica D, 84 (1995), 31.  doi: 10.1016/0167-2789(95)00005-O.  Google Scholar

[24]

Y. Nishiura and H. Suzuki, Higher dimensional SLEP equation and applications to morphological stability in polymer problems,, SIAM Journal on Mathematical Analysis, 36 (): 916.  doi: 10.1137/S0036141002420157.  Google Scholar

[25]

I. Ohnishi, Y. Nishiura, M. Imai and Y. Matsushita, Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term,, Chaos, 9 (1999), 329.  doi: 10.1063/1.166410.  Google Scholar

[26]

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts,, Macromolecules, 19 (1986), 2621.   Google Scholar

[27]

X. Ren, Shell structure as solution to a free boundary problem from block copolymer morphology,, Discrete and Continuous Dynamical Systems, 24 (2009), 979.  doi: 10.3934/dcds.2009.24.979.  Google Scholar

[28]

X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem,, Interfaces and Free Boundaries, 5 (2003), 193.  doi: 10.4171/IFB/78.  Google Scholar

[29]

X. Ren and J. Wei, Triblock copolymer theory: Free energy, disordered phase and weak segregation,, Physica D, 178 (2003), 103.  doi: 10.1016/S0167-2789(02)00808-4.  Google Scholar

[30]

X. Ren and J. Wei, Triblock copolymer theory: Ordered ABC lamellar phase,, Journal of Nonlinear Science, 13 (2003), 175.  doi: 10.1007/s00332-002-0521-1.  Google Scholar

[31]

X. Ren and J. Wei, Single droplet pattern in the cylindrical phase of diblock copolymer morphology,, Journal of Nonlinear Science, 17 (2007), 471.  doi: 10.1007/s00332-007-9005-7.  Google Scholar

[32]

R. Tamate, K. Yamada, J. Vinals and T. Ohta, Structural rheology of microphase separated diblock copolymers,, Journal of the Physical Society of Japan, 77 (2008).   Google Scholar

[33]

P. Tang, F. Qiu, H. Zhang and Y. Yang, Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers,, Physical Review E, 69 (2004).   Google Scholar

[34]

R. Wang, J. Hu, Z. Jiang and D. Zhou, Morphology of ABCD tetrablock copolymers predicted by self-consistent field theory,, Macromolecular Theory and Simulations, 14 (2005), 256.   Google Scholar

[35]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems,", Springer-Verlag, (1986).  doi: 10.1007/978-1-4612-4838-5.  Google Scholar

show all references

References:
[1]

M. Atkins, "Long Term Dynamics of the Diblock Copolymer Model on Higher Dimensional Domains,", Master's thesis, (2011).   Google Scholar

[2]

M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers,, Physical Review A, 41 (1990), 6763.   Google Scholar

[3]

F. Bates and G. H. Fredrickson, Block copolymer thermodynamics: Theory and experiment,, Annual Review of Physical Chemistry, 41 (1990), 525.   Google Scholar

[4]

F. Bates and G. H. Fredrickson, Block copolymers - designer soft materials,, Physics Today, 52 (1999), 32.   Google Scholar

[5]

D. Blömker, B. Gawron and T. Wanner, Nucleation in the one-dimensional stochastic Cahn-Hilliard model,, Discrete and Continuous Dynamical Systems, 27 (2010), 25.  doi: 10.3934/dcds.2010.27.25.  Google Scholar

[6]

R. Choksi, Mathematical aspects of microphase separation of diblock copolymers,, in, (2003), 10.   Google Scholar

[7]

R. Choksi, M. A. Peletier and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional,, SIAM Journal on Applied Mathematics, 69 (2009), 1712.  doi: 10.1137/080728809.  Google Scholar

[8]

R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers,, Journal of Statistical Physics, 113 (2003), 151.  doi: 10.1023/A:1025722804873.  Google Scholar

[9]

D. A. Christian, A. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J. Liu, T. Baumgart and D. E. Discher, Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding,, Nature Materials, 8 (2009), 843.   Google Scholar

[10]

J. P. Desi, H. Edrees, J. Price, E. Sander and T. Wanner, The dynamics of nucleation in stochastic Cahn-Morral systems,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 707.  doi: 10.1137/100801378.  Google Scholar

[11]

J. P. Desi, E. Sander and T. Wanner, Complex transient patterns on the disk,, Discrete and Continuous Dynamical Systems, 15 (2006), 1049.  doi: 10.3934/dcds.2006.15.1049.  Google Scholar

[12]

E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems,, Congressus Numerantium, 30 (1981), 265.   Google Scholar

[13]

K. Glasner and R. Choksi, Coarsening and self-organization in dilute diblock copolymer melts and mixtures,, Physica D, 238 (2009), 1241.  doi: 10.1016/j.physd.2009.04.006.  Google Scholar

[14]

M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments,, Proceedings of the Royal Society of Edinburgh Sect. A, 125 (1995), 351.  doi: 10.1017/S0308210500028079.  Google Scholar

[15]

T. Hartley and T. Wanner, A semi-implicit spectral method for stochastic nonlocal phase-field models,, Discrete and Continuous Dynamical Systems, 25 (2009), 399.  doi: 10.3934/dcds.2009.25.399.  Google Scholar

[16]

X. Kang and X. Ren, Ring pattern solutions of a free boundary problem in diblock copolymer morphology,, Physica D, 238 (2009), 645.  doi: 10.1016/j.physd.2008.12.009.  Google Scholar

[17]

N. Q. Le, On the convergence of the Ohta-Kawasaki equation to motion by nonlocal Mullins-Sekerka law,, SIAM Journal on Mathematical Analysis, 42 (2010), 1602.  doi: 10.1137/090768643.  Google Scholar

[18]

S. Mahajan, S. Renker, P. Simon, J. Gutmann, A. Jain, S. Gruner, L. Fetters, G. Coates and U. Wiesner, Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,, Macromolecular Chemistry and Physics, 204 (2003), 1047.   Google Scholar

[19]

S. Maier-Paape, K. Mischaikow and T. Wanner, Structure of the attractor of the Cahn-Hilliard equation on a square,, International Journal of Bifurcation and Chaos, 17 (2007), 1221.  doi: 10.1142/S0218127407017781.  Google Scholar

[20]

H. Nakazawa and T. Ohta, Microphase separation of ABC-type triblock copolymers,, Macromolecules, 26 (1993), 5503.   Google Scholar

[21]

Y. Nishiura, "Far-from-Equilibrium Dynamics,'', Translations of Mathematical Monographs, 209 (2002).   Google Scholar

[22]

Y. Nishiura and I. Ohnishi, Rugged landscape with fine structure,, unpublished preprint., ().   Google Scholar

[23]

Y. Nishiura and I. Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers,, Physica D, 84 (1995), 31.  doi: 10.1016/0167-2789(95)00005-O.  Google Scholar

[24]

Y. Nishiura and H. Suzuki, Higher dimensional SLEP equation and applications to morphological stability in polymer problems,, SIAM Journal on Mathematical Analysis, 36 (): 916.  doi: 10.1137/S0036141002420157.  Google Scholar

[25]

I. Ohnishi, Y. Nishiura, M. Imai and Y. Matsushita, Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term,, Chaos, 9 (1999), 329.  doi: 10.1063/1.166410.  Google Scholar

[26]

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts,, Macromolecules, 19 (1986), 2621.   Google Scholar

[27]

X. Ren, Shell structure as solution to a free boundary problem from block copolymer morphology,, Discrete and Continuous Dynamical Systems, 24 (2009), 979.  doi: 10.3934/dcds.2009.24.979.  Google Scholar

[28]

X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem,, Interfaces and Free Boundaries, 5 (2003), 193.  doi: 10.4171/IFB/78.  Google Scholar

[29]

X. Ren and J. Wei, Triblock copolymer theory: Free energy, disordered phase and weak segregation,, Physica D, 178 (2003), 103.  doi: 10.1016/S0167-2789(02)00808-4.  Google Scholar

[30]

X. Ren and J. Wei, Triblock copolymer theory: Ordered ABC lamellar phase,, Journal of Nonlinear Science, 13 (2003), 175.  doi: 10.1007/s00332-002-0521-1.  Google Scholar

[31]

X. Ren and J. Wei, Single droplet pattern in the cylindrical phase of diblock copolymer morphology,, Journal of Nonlinear Science, 17 (2007), 471.  doi: 10.1007/s00332-007-9005-7.  Google Scholar

[32]

R. Tamate, K. Yamada, J. Vinals and T. Ohta, Structural rheology of microphase separated diblock copolymers,, Journal of the Physical Society of Japan, 77 (2008).   Google Scholar

[33]

P. Tang, F. Qiu, H. Zhang and Y. Yang, Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers,, Physical Review E, 69 (2004).   Google Scholar

[34]

R. Wang, J. Hu, Z. Jiang and D. Zhou, Morphology of ABCD tetrablock copolymers predicted by self-consistent field theory,, Macromolecular Theory and Simulations, 14 (2005), 256.   Google Scholar

[35]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems,", Springer-Verlag, (1986).  doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[1]

Georgios T. Kossioris, Georgios E. Zouraris. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1845-1872. doi: 10.3934/dcdsb.2013.18.1845

[2]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

[3]

Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881

[4]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[5]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[6]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[7]

T. Tachim Medjo. The exponential behavior of a stochastic Cahn-Hilliard-Navier-Stokes model with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1117-1138. doi: 10.3934/cpaa.2019054

[8]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[9]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[10]

Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965

[11]

David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135

[12]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[13]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[14]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[15]

T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067

[16]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[17]

Federico Bassetti, Lucia Ladelli. Large deviations for the solution of a Kac-type kinetic equation. Kinetic & Related Models, 2013, 6 (2) : 245-268. doi: 10.3934/krm.2013.6.245

[18]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[19]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[20]

Bo You. Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2283-2298. doi: 10.3934/cpaa.2019103

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]