August  2013, 33(8): 3791-3805. doi: 10.3934/dcds.2013.33.3791

A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density

1. 

Department of Mathematics, The University of Iowa, 14 MacLean Hall, Iowa City, Iowa 52242-1419, United States

Received  June 2012 Revised  October 2012 Published  January 2013

We study an initial boundary value problem for the 3D magnetohydrodynamics (MHD) equations of compressible fluids in $\mathbb{R}^3$. We establish a blow-up criterion for the local strong solutions in terms of the density and magnetic field. Namely, if the density is away from vacuum ($\rho= 0$) and the concentration of mass ($\rho=\infty$) and if the magnetic field is bounded above in terms of $L^\infty$-norm, then a local strong solution can be continued globally in time.
Citation: Anthony Suen. A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3791-3805. doi: 10.3934/dcds.2013.33.3791
References:
[1]

Academic Press, New York, London, 1970. Google Scholar

[2]

Annales de l'Institut Henri Poincaŕe Analysis Non Linéaire, 27 (2010), 337-350. doi: 10.1016/j.anihpc.2009.09.012.  Google Scholar

[3]

J. Diff. Eqns., 120 (1995), 215-254. doi: 10.1006/jdeq.1995.1111.  Google Scholar

[4]

J. Math. Fluid Mech., 7 (2005), 315-338. doi: 10.1007/s00021-004-0123-9.  Google Scholar

[5]

SIAM J. Math. Anal., 37 (2006), 1742-1760. doi: 10.1137/040618059.  Google Scholar

[6]

Oxford Lecture Series in Mathematics and its Applications, 10, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[7]

Discrete and Continuous Dynamical Systems, 32 (2012), 1835-1855. doi: 10.3934/dcds.2012.32.1835.  Google Scholar

[8]

Arch. Ration. Mech. Anal., 197 (2010), 203-238. doi: 10.1007/s00205-010-0295-9.  Google Scholar

[9]

Comm. Math. Phys., 283 (2008), 255-284. doi: 10.1007/s00220-008-0497-2.  Google Scholar

[10]

Ph.D. Thesis, Kyoto University, 1983. Google Scholar

[11]

J. Diff. Eqns., 245 (2008), 1762-1774. doi: 10.1016/j.jde.2008.07.007.  Google Scholar

[12]

Appl. Anal., 88 (2009), 357-379. doi: 10.1080/00036810802713933.  Google Scholar

[13]

Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, NJ, 1970.  Google Scholar

[14]

Arch. Rational Mechanics Ana., 205 (2012), 27-58. doi: 10.1007/s00205-012-0498-3.  Google Scholar

[15]

J. Math. Pures Appl., 95 (2011), 36-47. doi: 10.1016/j.matpur.2010.08.001.  Google Scholar

[16]

Comm. Pure Appl. Math., 51 (1998), 229-240. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.3.CO;2-K.  Google Scholar

[17]

Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

Academic Press, New York, London, 1970. Google Scholar

[2]

Annales de l'Institut Henri Poincaŕe Analysis Non Linéaire, 27 (2010), 337-350. doi: 10.1016/j.anihpc.2009.09.012.  Google Scholar

[3]

J. Diff. Eqns., 120 (1995), 215-254. doi: 10.1006/jdeq.1995.1111.  Google Scholar

[4]

J. Math. Fluid Mech., 7 (2005), 315-338. doi: 10.1007/s00021-004-0123-9.  Google Scholar

[5]

SIAM J. Math. Anal., 37 (2006), 1742-1760. doi: 10.1137/040618059.  Google Scholar

[6]

Oxford Lecture Series in Mathematics and its Applications, 10, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[7]

Discrete and Continuous Dynamical Systems, 32 (2012), 1835-1855. doi: 10.3934/dcds.2012.32.1835.  Google Scholar

[8]

Arch. Ration. Mech. Anal., 197 (2010), 203-238. doi: 10.1007/s00205-010-0295-9.  Google Scholar

[9]

Comm. Math. Phys., 283 (2008), 255-284. doi: 10.1007/s00220-008-0497-2.  Google Scholar

[10]

Ph.D. Thesis, Kyoto University, 1983. Google Scholar

[11]

J. Diff. Eqns., 245 (2008), 1762-1774. doi: 10.1016/j.jde.2008.07.007.  Google Scholar

[12]

Appl. Anal., 88 (2009), 357-379. doi: 10.1080/00036810802713933.  Google Scholar

[13]

Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, NJ, 1970.  Google Scholar

[14]

Arch. Rational Mechanics Ana., 205 (2012), 27-58. doi: 10.1007/s00205-012-0498-3.  Google Scholar

[15]

J. Math. Pures Appl., 95 (2011), 36-47. doi: 10.1016/j.matpur.2010.08.001.  Google Scholar

[16]

Comm. Pure Appl. Math., 51 (1998), 229-240. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.3.CO;2-K.  Google Scholar

[17]

Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[4]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[5]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[6]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[7]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[8]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[9]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[10]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[11]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[12]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[13]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[14]

Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048

[15]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[16]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3615-3627. doi: 10.3934/dcds.2021009

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]