Advanced Search
Article Contents
Article Contents

A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density

Abstract Related Papers Cited by
  • We study an initial boundary value problem for the 3D magnetohydrodynamics (MHD) equations of compressible fluids in $\mathbb{R}^3$. We establish a blow-up criterion for the local strong solutions in terms of the density and magnetic field. Namely, if the density is away from vacuum ($\rho= 0$) and the concentration of mass ($\rho=\infty$) and if the magnetic field is bounded above in terms of $L^\infty$-norm, then a local strong solution can be continued globally in time.
    Mathematics Subject Classification: 76W05, 35Q35.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Cabannes, "Theoretical Magneto-Fluid Dynamics," Academic Press, New York, London, 1970.


    J. Fan, S. Jiang and Y. Ou, A blow-up criterion for three-dimensional compressible viscous heat-conductive flows, Annales de l'Institut Henri Poincaŕe Analysis Non Linéaire, 27 (2010), 337-350.doi: 10.1016/j.anihpc.2009.09.012.


    D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data, J. Diff. Eqns., 120 (1995), 215-254.doi: 10.1006/jdeq.1995.1111.


    D. Hoff, Compressible flow in a half-space with Navier boundary conditions, J. Math. Fluid Mech., 7 (2005), 315-338.doi: 10.1007/s00021-004-0123-9.


    D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow, SIAM J. Math. Anal., 37 (2006), 1742-1760.doi: 10.1137/040618059.


    P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models," Oxford Lecture Series in Mathematics and its Applications, 10, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.


    M. Lu, Y. Du and Z. Yai, Blow-up phenomena for the 3D compressible MHD equations, Discrete and Continuous Dynamical Systems, 32 (2012), 1835-1855.doi: 10.3934/dcds.2012.32.1835.


    X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.doi: 10.1007/s00205-010-0295-9.


    X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284.doi: 10.1007/s00220-008-0497-2.


    S. Kawashima, "Systems of a Hyperbolic-Parabolic Composite Type, With Applications to the Equations of Magnetohydrodynamics," Ph.D. Thesis, Kyoto University, 1983.


    O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations, J. Diff. Eqns., 245 (2008), 1762-1774.doi: 10.1016/j.jde.2008.07.007.


    R. Sart, Existence of finite energy weak solutions for the equations MHD of compressible fluids, Appl. Anal., 88 (2009), 357-379.doi: 10.1080/00036810802713933.


    E. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, NJ, 1970.


    A. Suen and D. Hoff, Global low-energy weak solutions of the equations of 3D compressible magnetohydrodynamics, Arch. Rational Mechanics Ana., 205 (2012), 27-58.doi: 10.1007/s00205-012-0498-3.


    Y. Sun, C. Wang and Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47.doi: 10.1016/j.matpur.2010.08.001.


    Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.3.CO;2-K.


    W. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation," Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4612-1015-3.

  • 加载中

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint