January  2013, 33(1): 381-389. doi: 10.3934/dcds.2013.33.381

Periodic solutions of first order systems

1. 

Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294, United States

Received  August 2011 Revised  January 2012 Published  September 2012

Let $f\in C(% %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion ^{m},% %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion ^{m})$ and $p\in C([0,T],% %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion ^{m})$ be continuous functions. We consider the $T$ periodic boundary value problem (*) $u^{\prime}(t)=f(u(t))+p(t),$ $u(0)=u(T).$ It is shown that when $f$ is a coercive gradient function, or the bounded perturbation of a coercive gradient function, and the Brouwer degree $d_{B}(f,B(0,r),0)\neq0$ for large $r$, there is a solution for all $p.$ A result for bounded $f$ is also obtained.
Citation: J. R. Ward. Periodic solutions of first order systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 381-389. doi: 10.3934/dcds.2013.33.381
References:
[1]

A. Capietto, J. Mawhin and F. Zanolin, Continuation theoremsfor periodic perturbations of autonomous systems,, Trans. Amer. Math. Soc., 329 (1992), 41.  doi: 10.1090/S0002-9947-1992-1042285-7.  Google Scholar

[2]

M. Farkas, "Periodic Motions,", Applied MathematicalSciences, 104 (1994).   Google Scholar

[3]

M. A. Krasnosel'skiĭ, "The Operator Oftranslation Along the Trajectories of Differential Equations,", Translations of Mathematical Monographs, 19 (1968).   Google Scholar

[4]

M. A. Krasnosel'skiĭ and P. P. Zabreĭko, "Geometricalmethods of Nonlinear Analysis,", Translated from the Russian by Christian C. Fenske. Grundlehren der Mathematischen Wissenschaften, 263 (1984).   Google Scholar

[5]

E. M. Landesman and A. C. Lazer, Nonlinear perturbations oflinear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (): 609.   Google Scholar

[6]

A. C. Lazer and D. E. Leach, Bounded perturbations of forcedharmonic oscillators at resonance,, Ann. Mat. Pura Appl. (4), 82 (1969), 49.   Google Scholar

[7]

J. Mawhin, "Topological Degree Methods in Nonlinearboundary Value Problems,", CBMS Regional Conference Series in Mathematics, (1979).   Google Scholar

[8]

J. Mawhin and J. R. Jr. Ward, Guiding-like functions forperiodic or bounded solutions of ordinary differential equations,, Discrete Contin. Dyn. Syst., 8 (2002), 39.   Google Scholar

[9]

P. Omari and F. Zanolin, Remarks on periodic solutions for firstorder nonlinear differential systems,, Boll. Un. Mat. Ital. B (6), 2 (1983), 207.   Google Scholar

[10]

N. Rouche and J. Mawhin, "Ordinary Differential Equations. Stability and Periodic Solutions,", Translated from the French andwith a preface by R. E. Gaines. Surveys and Reference Works in Mathematics, (1980).   Google Scholar

show all references

References:
[1]

A. Capietto, J. Mawhin and F. Zanolin, Continuation theoremsfor periodic perturbations of autonomous systems,, Trans. Amer. Math. Soc., 329 (1992), 41.  doi: 10.1090/S0002-9947-1992-1042285-7.  Google Scholar

[2]

M. Farkas, "Periodic Motions,", Applied MathematicalSciences, 104 (1994).   Google Scholar

[3]

M. A. Krasnosel'skiĭ, "The Operator Oftranslation Along the Trajectories of Differential Equations,", Translations of Mathematical Monographs, 19 (1968).   Google Scholar

[4]

M. A. Krasnosel'skiĭ and P. P. Zabreĭko, "Geometricalmethods of Nonlinear Analysis,", Translated from the Russian by Christian C. Fenske. Grundlehren der Mathematischen Wissenschaften, 263 (1984).   Google Scholar

[5]

E. M. Landesman and A. C. Lazer, Nonlinear perturbations oflinear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (): 609.   Google Scholar

[6]

A. C. Lazer and D. E. Leach, Bounded perturbations of forcedharmonic oscillators at resonance,, Ann. Mat. Pura Appl. (4), 82 (1969), 49.   Google Scholar

[7]

J. Mawhin, "Topological Degree Methods in Nonlinearboundary Value Problems,", CBMS Regional Conference Series in Mathematics, (1979).   Google Scholar

[8]

J. Mawhin and J. R. Jr. Ward, Guiding-like functions forperiodic or bounded solutions of ordinary differential equations,, Discrete Contin. Dyn. Syst., 8 (2002), 39.   Google Scholar

[9]

P. Omari and F. Zanolin, Remarks on periodic solutions for firstorder nonlinear differential systems,, Boll. Un. Mat. Ital. B (6), 2 (1983), 207.   Google Scholar

[10]

N. Rouche and J. Mawhin, "Ordinary Differential Equations. Stability and Periodic Solutions,", Translated from the French andwith a preface by R. E. Gaines. Surveys and Reference Works in Mathematics, (1980).   Google Scholar

[1]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[4]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[5]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[8]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[9]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[10]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[16]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[17]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[18]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[19]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[20]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]