-
Previous Article
Invariant measures for general induced maps and towers
- DCDS Home
- This Issue
-
Next Article
A semi-invertible Oseledets Theorem with applications to transfer operator cocycles
On the non-homogeneous boundary value problem for Schrödinger equations
1. | UPMC Univ Paris 6, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France |
References:
[1] |
Robert A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).
|
[2] |
Ramona Anton, Cubic nonlinear Schrödinger equation on three dimensional balls with radial data,, Comm. Partial Differential Equations, 33 (2008), 1862.
doi: 10.1080/03605300802402591. |
[3] |
Ramona Anton, Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains,, Bull. Soc. Math. France, 136 (2008), 27.
|
[4] |
Corentin Audiard, Non-homogeneous boundary value problems for linear dispersive equations,, Comm. Partial Differential Equations, 37 (2012), 1.
doi: 10.1080/03605302.2011.587492. |
[5] |
H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677.
doi: 10.1016/0362-546X(80)90068-1. |
[6] |
Charles Bu and Walter Strauss, An inhomogeneous boundary value problem for nonlinear Schrödinger equations,, J. Differential Equations, 173 (2001), 79.
doi: 10.1006/jdeq.2000.3871. |
[7] |
N. Burq, P. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 295.
doi: 10.1016/S0294-1449(03)00040-4. |
[8] |
Thierry Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10,, New York University Courant Institute of Mathematical Sciences, (2003). Google Scholar |
[9] |
David Gilbarg and Neil S. Trudinger, "Elliptic partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).
|
[10] |
Heinrich W. Guggenheimer, "Differential Geometry,", Corrected reprint of the 1963 edition, (1963).
|
[11] |
Justin Holmer, The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line,, Differential Integral Equations, 18 (2005), 647.
|
[12] |
Lars Hörmander, "The Analysis of Linear Partial Differential Operators. III, Pseudo-Differential Operators,", Reprint of the 1994 edition, (1994).
|
[13] |
Oana Ivanovici, On the Schrödinger equation outside strictly convex obstacles,, Anal. PDE, 3 (2010), 261.
doi: 10.2140/apde.2010.3.261. |
[14] |
Oana Ivanovici and Fabrice Planchon, On the energy critical Schrödinger equation in $3D$ non-trapping domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire}, 27 (2010), 1153.
doi: 10.1016/j.anihpc.2010.04.001. |
[15] |
Tosio Kato, On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness,, J. Anal. Math., 67 (1995), 281.
doi: 10.1007/BF02787794. |
[16] |
Carlos E. Kenig, Gustavo Ponce and Luis Vega, Small solutions to nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 255.
|
[17] |
I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control,, Differential Integral Equations, 5 (1992), 521.
|
[18] |
G. Lebeau, Contrôle de l'équation de Schrödinger,, J. Math. Pures Appl. (9), 71 (1992), 267.
|
[19] |
Felipe Linares and Gustavo Ponce, "Introduction to Nonlinear Dispersive Equations,", Universitext, (2009).
|
[20] |
J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications. Vol. 1,", Travaux et Recherches Mathématiques, (1968).
|
[21] |
J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications. Vol. 2,", Travaux et Recherches Mathématiques, (1968).
|
[22] |
Elaine Machtyngier, Exact controllability for the Schrödinger equation,, SIAM J. Control Optim., 32 (1994), 24.
doi: 10.1137/S0363012991223145. |
[23] |
Türker Özsarí, Varga K. Kalantarov and Irena Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control,, J. Differential Equations, 251 (2011), 1841.
doi: 10.1016/j.jde.2011.04.003. |
[24] |
Fabrice Planchon and Luis Vega, Bilinear virial identities and applications,, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261.
|
[25] |
Lionel Rosier and Bing-Yu Zhang, Exact boundary controllability of the nonlinear Schrödinger equation,, J. Differential Equations, 246 (2009), 4129.
doi: 10.1016/j.jde.2008.11.004. |
[26] |
Gigliola Staffilani and Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients,, Comm. Partial Differential Equations, 27 (2002), 1337.
doi: 10.1081/PDE-120005841. |
[27] |
D. Tataru, Boundary controllability for conservative PDEs,, Appl. Math. Optim., 31 (1995), 257.
doi: 10.1007/BF01215993. |
[28] |
Hans Triebel, "Theory of Function Spaces," Monographs in Mathematics, 78,, Birkhäuser Verlag, (1983).
doi: 10.1007/978-3-0346-0416-1. |
[29] |
Masayoshi Tsutsumi, On smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in two space dimensions,, Nonlinear Anal., 13 (1989), 1051.
doi: 10.1016/0362-546X(89)90094-1. |
show all references
References:
[1] |
Robert A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).
|
[2] |
Ramona Anton, Cubic nonlinear Schrödinger equation on three dimensional balls with radial data,, Comm. Partial Differential Equations, 33 (2008), 1862.
doi: 10.1080/03605300802402591. |
[3] |
Ramona Anton, Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains,, Bull. Soc. Math. France, 136 (2008), 27.
|
[4] |
Corentin Audiard, Non-homogeneous boundary value problems for linear dispersive equations,, Comm. Partial Differential Equations, 37 (2012), 1.
doi: 10.1080/03605302.2011.587492. |
[5] |
H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677.
doi: 10.1016/0362-546X(80)90068-1. |
[6] |
Charles Bu and Walter Strauss, An inhomogeneous boundary value problem for nonlinear Schrödinger equations,, J. Differential Equations, 173 (2001), 79.
doi: 10.1006/jdeq.2000.3871. |
[7] |
N. Burq, P. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 295.
doi: 10.1016/S0294-1449(03)00040-4. |
[8] |
Thierry Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10,, New York University Courant Institute of Mathematical Sciences, (2003). Google Scholar |
[9] |
David Gilbarg and Neil S. Trudinger, "Elliptic partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).
|
[10] |
Heinrich W. Guggenheimer, "Differential Geometry,", Corrected reprint of the 1963 edition, (1963).
|
[11] |
Justin Holmer, The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line,, Differential Integral Equations, 18 (2005), 647.
|
[12] |
Lars Hörmander, "The Analysis of Linear Partial Differential Operators. III, Pseudo-Differential Operators,", Reprint of the 1994 edition, (1994).
|
[13] |
Oana Ivanovici, On the Schrödinger equation outside strictly convex obstacles,, Anal. PDE, 3 (2010), 261.
doi: 10.2140/apde.2010.3.261. |
[14] |
Oana Ivanovici and Fabrice Planchon, On the energy critical Schrödinger equation in $3D$ non-trapping domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire}, 27 (2010), 1153.
doi: 10.1016/j.anihpc.2010.04.001. |
[15] |
Tosio Kato, On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness,, J. Anal. Math., 67 (1995), 281.
doi: 10.1007/BF02787794. |
[16] |
Carlos E. Kenig, Gustavo Ponce and Luis Vega, Small solutions to nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 255.
|
[17] |
I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control,, Differential Integral Equations, 5 (1992), 521.
|
[18] |
G. Lebeau, Contrôle de l'équation de Schrödinger,, J. Math. Pures Appl. (9), 71 (1992), 267.
|
[19] |
Felipe Linares and Gustavo Ponce, "Introduction to Nonlinear Dispersive Equations,", Universitext, (2009).
|
[20] |
J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications. Vol. 1,", Travaux et Recherches Mathématiques, (1968).
|
[21] |
J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications. Vol. 2,", Travaux et Recherches Mathématiques, (1968).
|
[22] |
Elaine Machtyngier, Exact controllability for the Schrödinger equation,, SIAM J. Control Optim., 32 (1994), 24.
doi: 10.1137/S0363012991223145. |
[23] |
Türker Özsarí, Varga K. Kalantarov and Irena Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control,, J. Differential Equations, 251 (2011), 1841.
doi: 10.1016/j.jde.2011.04.003. |
[24] |
Fabrice Planchon and Luis Vega, Bilinear virial identities and applications,, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261.
|
[25] |
Lionel Rosier and Bing-Yu Zhang, Exact boundary controllability of the nonlinear Schrödinger equation,, J. Differential Equations, 246 (2009), 4129.
doi: 10.1016/j.jde.2008.11.004. |
[26] |
Gigliola Staffilani and Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients,, Comm. Partial Differential Equations, 27 (2002), 1337.
doi: 10.1081/PDE-120005841. |
[27] |
D. Tataru, Boundary controllability for conservative PDEs,, Appl. Math. Optim., 31 (1995), 257.
doi: 10.1007/BF01215993. |
[28] |
Hans Triebel, "Theory of Function Spaces," Monographs in Mathematics, 78,, Birkhäuser Verlag, (1983).
doi: 10.1007/978-3-0346-0416-1. |
[29] |
Masayoshi Tsutsumi, On smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in two space dimensions,, Nonlinear Anal., 13 (1989), 1051.
doi: 10.1016/0362-546X(89)90094-1. |
[1] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[2] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[3] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[4] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[5] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[6] |
Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061 |
[7] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[8] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[9] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[10] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[11] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[12] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294 |
[13] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[14] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[15] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[16] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[17] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[18] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[19] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[20] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]