September  2013, 33(9): 3861-3884. doi: 10.3934/dcds.2013.33.3861

On the non-homogeneous boundary value problem for Schrödinger equations

1. 

UPMC Univ Paris 6, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

Received  July 2012 Revised  February 2013 Published  March 2013

We study the initial boundary value problem for the Schrödinger equation with non-homogeneous Dirichlet boundary conditions. Special care is devoted to the space where the boundary data belong. When $\Omega$ is the complement of a non-trapping obstacle, well-posedness for boundary data of optimal regularity is obtained by transposition arguments. If $\Omega^c$ is convex, a local smoothing property (similar to the one for the Cauchy problem) is proved, and used to obtain Strichartz estimates. As an application local well-posedness for a class of subcritical non-linear Schrödinger equations is derived.
Citation: Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861
References:
[1]

Robert A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).   Google Scholar

[2]

Ramona Anton, Cubic nonlinear Schrödinger equation on three dimensional balls with radial data,, Comm. Partial Differential Equations, 33 (2008), 1862.  doi: 10.1080/03605300802402591.  Google Scholar

[3]

Ramona Anton, Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains,, Bull. Soc. Math. France, 136 (2008), 27.   Google Scholar

[4]

Corentin Audiard, Non-homogeneous boundary value problems for linear dispersive equations,, Comm. Partial Differential Equations, 37 (2012), 1.  doi: 10.1080/03605302.2011.587492.  Google Scholar

[5]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[6]

Charles Bu and Walter Strauss, An inhomogeneous boundary value problem for nonlinear Schrödinger equations,, J. Differential Equations, 173 (2001), 79.  doi: 10.1006/jdeq.2000.3871.  Google Scholar

[7]

N. Burq, P. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 295.  doi: 10.1016/S0294-1449(03)00040-4.  Google Scholar

[8]

Thierry Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10,, New York University Courant Institute of Mathematical Sciences, (2003).   Google Scholar

[9]

David Gilbarg and Neil S. Trudinger, "Elliptic partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[10]

Heinrich W. Guggenheimer, "Differential Geometry,", Corrected reprint of the 1963 edition, (1963).   Google Scholar

[11]

Justin Holmer, The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line,, Differential Integral Equations, 18 (2005), 647.   Google Scholar

[12]

Lars Hörmander, "The Analysis of Linear Partial Differential Operators. III, Pseudo-Differential Operators,", Reprint of the 1994 edition, (1994).   Google Scholar

[13]

Oana Ivanovici, On the Schrödinger equation outside strictly convex obstacles,, Anal. PDE, 3 (2010), 261.  doi: 10.2140/apde.2010.3.261.  Google Scholar

[14]

Oana Ivanovici and Fabrice Planchon, On the energy critical Schrödinger equation in $3D$ non-trapping domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire}, 27 (2010), 1153.  doi: 10.1016/j.anihpc.2010.04.001.  Google Scholar

[15]

Tosio Kato, On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness,, J. Anal. Math., 67 (1995), 281.  doi: 10.1007/BF02787794.  Google Scholar

[16]

Carlos E. Kenig, Gustavo Ponce and Luis Vega, Small solutions to nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 255.   Google Scholar

[17]

I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control,, Differential Integral Equations, 5 (1992), 521.   Google Scholar

[18]

G. Lebeau, Contrôle de l'équation de Schrödinger,, J. Math. Pures Appl. (9), 71 (1992), 267.   Google Scholar

[19]

Felipe Linares and Gustavo Ponce, "Introduction to Nonlinear Dispersive Equations,", Universitext, (2009).   Google Scholar

[20]

J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications. Vol. 1,", Travaux et Recherches Mathématiques, (1968).   Google Scholar

[21]

J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications. Vol. 2,", Travaux et Recherches Mathématiques, (1968).   Google Scholar

[22]

Elaine Machtyngier, Exact controllability for the Schrödinger equation,, SIAM J. Control Optim., 32 (1994), 24.  doi: 10.1137/S0363012991223145.  Google Scholar

[23]

Türker Özsarí, Varga K. Kalantarov and Irena Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control,, J. Differential Equations, 251 (2011), 1841.  doi: 10.1016/j.jde.2011.04.003.  Google Scholar

[24]

Fabrice Planchon and Luis Vega, Bilinear virial identities and applications,, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261.   Google Scholar

[25]

Lionel Rosier and Bing-Yu Zhang, Exact boundary controllability of the nonlinear Schrödinger equation,, J. Differential Equations, 246 (2009), 4129.  doi: 10.1016/j.jde.2008.11.004.  Google Scholar

[26]

Gigliola Staffilani and Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients,, Comm. Partial Differential Equations, 27 (2002), 1337.  doi: 10.1081/PDE-120005841.  Google Scholar

[27]

D. Tataru, Boundary controllability for conservative PDEs,, Appl. Math. Optim., 31 (1995), 257.  doi: 10.1007/BF01215993.  Google Scholar

[28]

Hans Triebel, "Theory of Function Spaces," Monographs in Mathematics, 78,, Birkhäuser Verlag, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[29]

Masayoshi Tsutsumi, On smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in two space dimensions,, Nonlinear Anal., 13 (1989), 1051.  doi: 10.1016/0362-546X(89)90094-1.  Google Scholar

show all references

References:
[1]

Robert A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).   Google Scholar

[2]

Ramona Anton, Cubic nonlinear Schrödinger equation on three dimensional balls with radial data,, Comm. Partial Differential Equations, 33 (2008), 1862.  doi: 10.1080/03605300802402591.  Google Scholar

[3]

Ramona Anton, Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains,, Bull. Soc. Math. France, 136 (2008), 27.   Google Scholar

[4]

Corentin Audiard, Non-homogeneous boundary value problems for linear dispersive equations,, Comm. Partial Differential Equations, 37 (2012), 1.  doi: 10.1080/03605302.2011.587492.  Google Scholar

[5]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[6]

Charles Bu and Walter Strauss, An inhomogeneous boundary value problem for nonlinear Schrödinger equations,, J. Differential Equations, 173 (2001), 79.  doi: 10.1006/jdeq.2000.3871.  Google Scholar

[7]

N. Burq, P. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 295.  doi: 10.1016/S0294-1449(03)00040-4.  Google Scholar

[8]

Thierry Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10,, New York University Courant Institute of Mathematical Sciences, (2003).   Google Scholar

[9]

David Gilbarg and Neil S. Trudinger, "Elliptic partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[10]

Heinrich W. Guggenheimer, "Differential Geometry,", Corrected reprint of the 1963 edition, (1963).   Google Scholar

[11]

Justin Holmer, The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line,, Differential Integral Equations, 18 (2005), 647.   Google Scholar

[12]

Lars Hörmander, "The Analysis of Linear Partial Differential Operators. III, Pseudo-Differential Operators,", Reprint of the 1994 edition, (1994).   Google Scholar

[13]

Oana Ivanovici, On the Schrödinger equation outside strictly convex obstacles,, Anal. PDE, 3 (2010), 261.  doi: 10.2140/apde.2010.3.261.  Google Scholar

[14]

Oana Ivanovici and Fabrice Planchon, On the energy critical Schrödinger equation in $3D$ non-trapping domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire}, 27 (2010), 1153.  doi: 10.1016/j.anihpc.2010.04.001.  Google Scholar

[15]

Tosio Kato, On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness,, J. Anal. Math., 67 (1995), 281.  doi: 10.1007/BF02787794.  Google Scholar

[16]

Carlos E. Kenig, Gustavo Ponce and Luis Vega, Small solutions to nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 255.   Google Scholar

[17]

I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control,, Differential Integral Equations, 5 (1992), 521.   Google Scholar

[18]

G. Lebeau, Contrôle de l'équation de Schrödinger,, J. Math. Pures Appl. (9), 71 (1992), 267.   Google Scholar

[19]

Felipe Linares and Gustavo Ponce, "Introduction to Nonlinear Dispersive Equations,", Universitext, (2009).   Google Scholar

[20]

J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications. Vol. 1,", Travaux et Recherches Mathématiques, (1968).   Google Scholar

[21]

J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications. Vol. 2,", Travaux et Recherches Mathématiques, (1968).   Google Scholar

[22]

Elaine Machtyngier, Exact controllability for the Schrödinger equation,, SIAM J. Control Optim., 32 (1994), 24.  doi: 10.1137/S0363012991223145.  Google Scholar

[23]

Türker Özsarí, Varga K. Kalantarov and Irena Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control,, J. Differential Equations, 251 (2011), 1841.  doi: 10.1016/j.jde.2011.04.003.  Google Scholar

[24]

Fabrice Planchon and Luis Vega, Bilinear virial identities and applications,, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261.   Google Scholar

[25]

Lionel Rosier and Bing-Yu Zhang, Exact boundary controllability of the nonlinear Schrödinger equation,, J. Differential Equations, 246 (2009), 4129.  doi: 10.1016/j.jde.2008.11.004.  Google Scholar

[26]

Gigliola Staffilani and Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients,, Comm. Partial Differential Equations, 27 (2002), 1337.  doi: 10.1081/PDE-120005841.  Google Scholar

[27]

D. Tataru, Boundary controllability for conservative PDEs,, Appl. Math. Optim., 31 (1995), 257.  doi: 10.1007/BF01215993.  Google Scholar

[28]

Hans Triebel, "Theory of Function Spaces," Monographs in Mathematics, 78,, Birkhäuser Verlag, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[29]

Masayoshi Tsutsumi, On smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in two space dimensions,, Nonlinear Anal., 13 (1989), 1051.  doi: 10.1016/0362-546X(89)90094-1.  Google Scholar

[1]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[2]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[3]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[4]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[5]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[6]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[7]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[8]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[11]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[12]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

[13]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[14]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[15]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[16]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[17]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[18]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[19]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[20]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]