September  2013, 33(9): 3885-3901. doi: 10.3934/dcds.2013.33.3885

Invariant measures for general induced maps and towers

1. 

Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1, Canada

2. 

Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, 1090 Wien, Austria

Received  August 2012 Revised  February 2013 Published  March 2013

Absolutely continuous invariant measures (acims) for general induced transformations are shown to be related, in a natural way, to popular tower constructions regardless of any particulars of the latter. When combined with (an appropriate generalization of) the known integrability criterion for the existence of such acims, this leads to necessary and sufficient conditions under which acims can be lifted to, or projected from, nonsingular extensions.
Citation: Arno Berger, Roland Zweimüller. Invariant measures for general induced maps and towers. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3885-3901. doi: 10.3934/dcds.2013.33.3885
References:
[1]

J. Aaronson, "An Introduction to Infinite Ergodic Theory," Mathematical Surveys and Monographs, 50, AMS, Providence, RI, 1997.

[2]

J. Aaronson and T. Meyerovitch, Absolutely continuous, invariant measures for dissipative, ergodic transformations, Colloq. Math., 110 (2008), 193-199. doi: 10.4064/cm110-1-7.

[3]

H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Commun. Math. Phys., 168 (1995), 571-580.

[4]

H. Bruin, M. Nicol and D. Terhesiu, On Young towers associated with infinite measure preserving transformations, Stoch. Dyn., 9 (2009), 635-655. doi: 10.1142/S0219493709002816.

[5]

A. O. Gel'fond, A common property of number systems, Izv. Akad. Nauk SSSR. Ser. Mat., 23 (1959), 809-814.

[6]

G. Helmberg, Über konservative Transformationen, Math. Annalen, 165 (1966), 44-61.

[7]

F. Hofbauer, $\beta $-shifts have unique maximal measure, Mh. Math., 85 (1978), 189-198.

[8]

F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Isr. J. Math., 34 (1979), 213-237. doi: 10.1007/BF02760884.

[9]

S. Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Sci. Tokyo, 19 (1943), 635-641.

[10]

G. Keller, Markov extensions, zeta-functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc., 314 (1989), 433-497. doi: 10.2307/2001395.

[11]

G. Keller, Lifting measures to Markov extensions, Mh. Math., 108 (1989), 183-200. doi: 10.1007/BF01308670.

[12]

W. Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.

[13]

K. Petersen, "Ergodic Theory," Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1983.

[14]

M. Thaler, Transformations on [0,1] with infinite invariant measures, Isr. J. Math., 46 (1983), 67-96. doi: 10.1007/BF02760623.

[15]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. (2), 147 (1998), 585-650. doi: 10.2307/120960.

[16]

L.-S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188. doi: 10.1007/BF02808180.

[17]

R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergod. Th. & Dynam. Sys., 20 (2000), 1519-1549. doi: 10.1017/S0143385700000821.

[18]

R. Zweimüller, Invariant measures for general(ized) induced transformations, Proc. Amer. Math. Soc., 133 (2005), 2283-2295. doi: 10.1090/S0002-9939-05-07772-5.

[19]

R. Zweimüller, Measure preserving extensions and minimal wandering rates, Israel J. Math., 181 (2011), 295-303. doi: 10.1007/s11856-011-0009-5.

show all references

References:
[1]

J. Aaronson, "An Introduction to Infinite Ergodic Theory," Mathematical Surveys and Monographs, 50, AMS, Providence, RI, 1997.

[2]

J. Aaronson and T. Meyerovitch, Absolutely continuous, invariant measures for dissipative, ergodic transformations, Colloq. Math., 110 (2008), 193-199. doi: 10.4064/cm110-1-7.

[3]

H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Commun. Math. Phys., 168 (1995), 571-580.

[4]

H. Bruin, M. Nicol and D. Terhesiu, On Young towers associated with infinite measure preserving transformations, Stoch. Dyn., 9 (2009), 635-655. doi: 10.1142/S0219493709002816.

[5]

A. O. Gel'fond, A common property of number systems, Izv. Akad. Nauk SSSR. Ser. Mat., 23 (1959), 809-814.

[6]

G. Helmberg, Über konservative Transformationen, Math. Annalen, 165 (1966), 44-61.

[7]

F. Hofbauer, $\beta $-shifts have unique maximal measure, Mh. Math., 85 (1978), 189-198.

[8]

F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Isr. J. Math., 34 (1979), 213-237. doi: 10.1007/BF02760884.

[9]

S. Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Sci. Tokyo, 19 (1943), 635-641.

[10]

G. Keller, Markov extensions, zeta-functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc., 314 (1989), 433-497. doi: 10.2307/2001395.

[11]

G. Keller, Lifting measures to Markov extensions, Mh. Math., 108 (1989), 183-200. doi: 10.1007/BF01308670.

[12]

W. Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.

[13]

K. Petersen, "Ergodic Theory," Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1983.

[14]

M. Thaler, Transformations on [0,1] with infinite invariant measures, Isr. J. Math., 46 (1983), 67-96. doi: 10.1007/BF02760623.

[15]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. (2), 147 (1998), 585-650. doi: 10.2307/120960.

[16]

L.-S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188. doi: 10.1007/BF02808180.

[17]

R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergod. Th. & Dynam. Sys., 20 (2000), 1519-1549. doi: 10.1017/S0143385700000821.

[18]

R. Zweimüller, Invariant measures for general(ized) induced transformations, Proc. Amer. Math. Soc., 133 (2005), 2283-2295. doi: 10.1090/S0002-9939-05-07772-5.

[19]

R. Zweimüller, Measure preserving extensions and minimal wandering rates, Israel J. Math., 181 (2011), 295-303. doi: 10.1007/s11856-011-0009-5.

[1]

Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061

[2]

Eli Glasner, Benjamin Weiss. A generic distal tower of arbitrary countable height over an arbitrary infinite ergodic system. Journal of Modern Dynamics, 2021, 17: 435-463. doi: 10.3934/jmd.2021015

[3]

Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075

[4]

Ingenuin Gasser. Modelling and simulation of a solar updraft tower. Kinetic and Related Models, 2009, 2 (1) : 191-204. doi: 10.3934/krm.2009.2.191

[5]

Lyndsey Clark. The $\beta$-transformation with a hole. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1249-1269. doi: 10.3934/dcds.2016.36.1249

[6]

Oğul Esen, Partha Guha. On the geometry of the Schmidt-Legendre transformation. Journal of Geometric Mechanics, 2018, 10 (3) : 251-291. doi: 10.3934/jgm.2018010

[7]

Marc Chamberland, Victor H. Moll. Dynamics of the degree six Landen transformation. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 905-919. doi: 10.3934/dcds.2006.15.905

[8]

David Ginzburg and Joseph Hundley. A new tower of Rankin-Selberg integrals. Electronic Research Announcements, 2006, 12: 56-62.

[9]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[10]

N. Kamran, K. Tenenblat. Periodic systems for the higher-dimensional Laplace transformation. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 359-378. doi: 10.3934/dcds.1998.4.359

[11]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[12]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[13]

Andrey Kochergin. A Besicovitch cylindrical transformation with Hölder function. Electronic Research Announcements, 2015, 22: 87-91. doi: 10.3934/era.2015.22.87

[14]

Hong-Gunn Chew, Cheng-Chew Lim. On regularisation parameter transformation of support vector machines. Journal of Industrial and Management Optimization, 2009, 5 (2) : 403-415. doi: 10.3934/jimo.2009.5.403

[15]

Hongyu Liu, Ting Zhou. Two dimensional invisibility cloaking via transformation optics. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 525-543. doi: 10.3934/dcds.2011.31.525

[16]

Andrés Contreras, Manuel del Pino. Nodal bubble-tower solutions to radial elliptic problems near criticality. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 525-539. doi: 10.3934/dcds.2006.16.525

[17]

Palash Sarkar, Shashank Singh. A unified polynomial selection method for the (tower) number field sieve algorithm. Advances in Mathematics of Communications, 2019, 13 (3) : 435-455. doi: 10.3934/amc.2019028

[18]

Alex Castro, Wyatt Howard, Corey Shanbrom. Complete spelling rules for the Monster tower over three-space. Journal of Geometric Mechanics, 2017, 9 (3) : 317-333. doi: 10.3934/jgm.2017013

[19]

Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751

[20]

Zhongyuan Liu. Nodal Bubble-Tower Solutions for a semilinear elliptic problem with competing powers. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5299-5317. doi: 10.3934/dcds.2017230

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]