Citation: |
[1] |
N. Anantharaman, Precise counting results for closed orbits of Anosov flows, Ann. Scient. Éc. Norm. Sup., 33 (2000), 33-56. |
[2] |
R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460.doi: 10.2307/2373793. |
[3] |
R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.doi: 10.1007/BF01389848. |
[4] |
D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math., 147 (1998), 357-390.doi: 10.2307/121012. |
[5] |
M. Guysinsky, B. Hasselblatt and V. Rayskin, Differentiability of the Hartman-Grobman linearization, Discr. Cont. Dyn. Syst., 9 (2003), 979-984. |
[6] |
B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergod. Th. & Dynam. Sys., 14 (1994), 645-666. |
[7] |
B. Hasselblatt, Regularity of the Anosov splitting, Ergod. Th. & Dynam. Sys., 17 (1997), 169-172.doi: 10.1017/S0143385797069757. |
[8] |
M. Hirsch and C. Pugh, Smoothness of horocycle foliations, J. Differential Geometry, 10 (1975), 225-238. |
[9] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,'' Springer Lecture Notes in Mathematics, 583 1977. |
[10] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'' Cambridge Univ. Press, Cambridge, 1995. |
[11] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astéerisque, 187-188 (1990), 268 pp. |
[12] |
Ya. Pesin, "Lectures on Partial Hyperbolicity and Stable Ergodicity,'' European Mathematical Society, Zürich, 2004. |
[13] |
V. Petkov and L. Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Analysis and PDE, 3 (2010), 427-489. |
[14] |
V. Petkov and L. Stoyanov, Correlations for pairs of closed trajectories in open billiards, Nonlinearity, 22 (2009), 2657-2679.doi: 10.1088/0951-7715/22/11/005. |
[15] |
V. Petkov and L. Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals, Commun. Math. Phys., 310 (2012), 675-704.doi: 10.1007/s00220-012-1419-x. |
[16] |
M. Pollicott and R. Sharp, Exponential error terms for growth functions of negatively curved surfaces, Amer. J. Math., 120 (1998), 1019-1042.doi: 10.1353/ajm.1998.0041. |
[17] |
M. Pollicott and R. Sharp, Asymptotic expansions for closed orbits in homology classes, Geom. Dedicata, 87 (2001), 123-160.doi: 10.1023/A:1012097314447. |
[18] |
M. Pollicott and R. Sharp, Correlations for pairs of closed geodesics, Invent. Math., 163 (2006), 1-24.doi: 10.1007/s00222-004-0427-7. |
[19] |
C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows, Invent. Math., 10 (1970), 187-198.doi: 10.1007/BF01403247. |
[20] |
C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, Duke Math. J., 86 (1997), 517-546; Correction: Duke Math. J., 105 (2000), 105-106.doi: 10.1215/S0012-7094-97-08616-6. |
[21] |
L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows, Nonlinearity, 24 (2011), 1089-1120.doi: 10.1088/0951-7715/24/4/005. |
[22] |
L. Stoyanov, Non-integrability of open billiard flows and Dolgopyat type estimates, Ergod. Th. & Dynam. Sys., 32 (2012), 295-313.doi: 10.1017/S0143385710000933. |