February  2013, 33(2): 391-412. doi: 10.3934/dcds.2013.33.391

Pinching conditions, linearization and regularity of Axiom A flows

1. 

School of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia

Received  June 2011 Revised  May 2012 Published  September 2012

In this paper we study a certain regularity property of $C^2$ Axiom A flows $\phi_t$ over basic sets $Λ$ related to diameters of balls in Bowen's metric, which we call regular distortion along unstable manifolds. The motivation to investigate the latter comes from the study of spectral properties of Ruelle transfer operators in [21]. We prove that if the bottom of the spectrum of $d\phi_t$ over $E^u_{|Λ}$ is point-wisely pinched and integrable, then the flow has regular distortion along unstable manifolds over $Λ$. In the process, under the same conditions, we show that locally the flow is Lipschitz conjugate to its linearization over the `pinched part' of the unstable tangent bundle.
Citation: Luchezar Stoyanov. Pinching conditions, linearization and regularity of Axiom A flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 391-412. doi: 10.3934/dcds.2013.33.391
References:
[1]

N. Anantharaman, Precise counting results for closed orbits of Anosov flows,, Ann. Scient. Éc. Norm. Sup., 33 (2000), 33.   Google Scholar

[2]

R. Bowen, Symbolic dynamics for hyperbolic flows,, Amer. J. Math., 95 (1973), 429.  doi: 10.2307/2373793.  Google Scholar

[3]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows,, Invent. Math., 29 (1975), 181.  doi: 10.1007/BF01389848.  Google Scholar

[4]

D. Dolgopyat, On decay of correlations in Anosov flows,, Ann. of Math., 147 (1998), 357.  doi: 10.2307/121012.  Google Scholar

[5]

M. Guysinsky, B. Hasselblatt and V. Rayskin, Differentiability of the Hartman-Grobman linearization,, Discr. Cont. Dyn. Syst., 9 (2003), 979.   Google Scholar

[6]

B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations,, Ergod. Th. & Dynam. Sys., 14 (1994), 645.   Google Scholar

[7]

B. Hasselblatt, Regularity of the Anosov splitting,, Ergod. Th. & Dynam. Sys., 17 (1997), 169.  doi: 10.1017/S0143385797069757.  Google Scholar

[8]

M. Hirsch and C. Pugh, Smoothness of horocycle foliations,, J. Differential Geometry, 10 (1975), 225.   Google Scholar

[9]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,'', Springer Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[10]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', Cambridge Univ. Press, (1995).   Google Scholar

[11]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics,, Astéerisque, 187-188 (1990), 187.   Google Scholar

[12]

Ya. Pesin, "Lectures on Partial Hyperbolicity and Stable Ergodicity,'', European Mathematical Society, (2004).   Google Scholar

[13]

V. Petkov and L. Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function,, Analysis and PDE, 3 (2010), 427.   Google Scholar

[14]

V. Petkov and L. Stoyanov, Correlations for pairs of closed trajectories in open billiards,, Nonlinearity, 22 (2009), 2657.  doi: 10.1088/0951-7715/22/11/005.  Google Scholar

[15]

V. Petkov and L. Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals,, Commun. Math. Phys., 310 (2012), 675.  doi: 10.1007/s00220-012-1419-x.  Google Scholar

[16]

M. Pollicott and R. Sharp, Exponential error terms for growth functions of negatively curved surfaces,, Amer. J. Math., 120 (1998), 1019.  doi: 10.1353/ajm.1998.0041.  Google Scholar

[17]

M. Pollicott and R. Sharp, Asymptotic expansions for closed orbits in homology classes,, Geom. Dedicata, 87 (2001), 123.  doi: 10.1023/A:1012097314447.  Google Scholar

[18]

M. Pollicott and R. Sharp, Correlations for pairs of closed geodesics,, Invent. Math., 163 (2006), 1.  doi: 10.1007/s00222-004-0427-7.  Google Scholar

[19]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows,, Invent. Math., 10 (1970), 187.  doi: 10.1007/BF01403247.  Google Scholar

[20]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations,, Duke Math. J., 86 (1997), 517.  doi: 10.1215/S0012-7094-97-08616-6.  Google Scholar

[21]

L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows,, Nonlinearity, 24 (2011), 1089.  doi: 10.1088/0951-7715/24/4/005.  Google Scholar

[22]

L. Stoyanov, Non-integrability of open billiard flows and Dolgopyat type estimates,, Ergod. Th. & Dynam. Sys., 32 (2012), 295.  doi: 10.1017/S0143385710000933.  Google Scholar

show all references

References:
[1]

N. Anantharaman, Precise counting results for closed orbits of Anosov flows,, Ann. Scient. Éc. Norm. Sup., 33 (2000), 33.   Google Scholar

[2]

R. Bowen, Symbolic dynamics for hyperbolic flows,, Amer. J. Math., 95 (1973), 429.  doi: 10.2307/2373793.  Google Scholar

[3]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows,, Invent. Math., 29 (1975), 181.  doi: 10.1007/BF01389848.  Google Scholar

[4]

D. Dolgopyat, On decay of correlations in Anosov flows,, Ann. of Math., 147 (1998), 357.  doi: 10.2307/121012.  Google Scholar

[5]

M. Guysinsky, B. Hasselblatt and V. Rayskin, Differentiability of the Hartman-Grobman linearization,, Discr. Cont. Dyn. Syst., 9 (2003), 979.   Google Scholar

[6]

B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations,, Ergod. Th. & Dynam. Sys., 14 (1994), 645.   Google Scholar

[7]

B. Hasselblatt, Regularity of the Anosov splitting,, Ergod. Th. & Dynam. Sys., 17 (1997), 169.  doi: 10.1017/S0143385797069757.  Google Scholar

[8]

M. Hirsch and C. Pugh, Smoothness of horocycle foliations,, J. Differential Geometry, 10 (1975), 225.   Google Scholar

[9]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,'', Springer Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[10]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', Cambridge Univ. Press, (1995).   Google Scholar

[11]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics,, Astéerisque, 187-188 (1990), 187.   Google Scholar

[12]

Ya. Pesin, "Lectures on Partial Hyperbolicity and Stable Ergodicity,'', European Mathematical Society, (2004).   Google Scholar

[13]

V. Petkov and L. Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function,, Analysis and PDE, 3 (2010), 427.   Google Scholar

[14]

V. Petkov and L. Stoyanov, Correlations for pairs of closed trajectories in open billiards,, Nonlinearity, 22 (2009), 2657.  doi: 10.1088/0951-7715/22/11/005.  Google Scholar

[15]

V. Petkov and L. Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals,, Commun. Math. Phys., 310 (2012), 675.  doi: 10.1007/s00220-012-1419-x.  Google Scholar

[16]

M. Pollicott and R. Sharp, Exponential error terms for growth functions of negatively curved surfaces,, Amer. J. Math., 120 (1998), 1019.  doi: 10.1353/ajm.1998.0041.  Google Scholar

[17]

M. Pollicott and R. Sharp, Asymptotic expansions for closed orbits in homology classes,, Geom. Dedicata, 87 (2001), 123.  doi: 10.1023/A:1012097314447.  Google Scholar

[18]

M. Pollicott and R. Sharp, Correlations for pairs of closed geodesics,, Invent. Math., 163 (2006), 1.  doi: 10.1007/s00222-004-0427-7.  Google Scholar

[19]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows,, Invent. Math., 10 (1970), 187.  doi: 10.1007/BF01403247.  Google Scholar

[20]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations,, Duke Math. J., 86 (1997), 517.  doi: 10.1215/S0012-7094-97-08616-6.  Google Scholar

[21]

L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows,, Nonlinearity, 24 (2011), 1089.  doi: 10.1088/0951-7715/24/4/005.  Google Scholar

[22]

L. Stoyanov, Non-integrability of open billiard flows and Dolgopyat type estimates,, Ergod. Th. & Dynam. Sys., 32 (2012), 295.  doi: 10.1017/S0143385710000933.  Google Scholar

[1]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[2]

Światosław R. Gal, Jarek Kędra. On distortion in groups of homeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 609-622. doi: 10.3934/jmd.2011.5.609

[3]

Sheldon Newhouse. Distortion estimates for planar diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 345-412. doi: 10.3934/dcds.2008.22.345

[4]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[5]

Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085

[6]

Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks & Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527

[7]

Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333

[8]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[9]

Richard Sharp. Distortion and entropy for automorphisms of free groups. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 347-363. doi: 10.3934/dcds.2010.26.347

[10]

Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems & Imaging, 2013, 7 (3) : 839-861. doi: 10.3934/ipi.2013.7.839

[11]

Steinar Evje, Kenneth H. Karlsen. Hyperbolic-elliptic models for well-reservoir flow. Networks & Heterogeneous Media, 2006, 1 (4) : 639-673. doi: 10.3934/nhm.2006.1.639

[12]

Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173

[13]

Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329

[14]

Ali Unver, Christian Ringhofer, Dieter Armbruster. A hyperbolic relaxation model for product flow in complex production networks. Conference Publications, 2009, 2009 (Special) : 790-799. doi: 10.3934/proc.2009.2009.790

[15]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001

[16]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[17]

Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015

[18]

Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019228

[19]

Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397

[20]

Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]