September  2013, 33(9): 4041-4069. doi: 10.3934/dcds.2013.33.4041

Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction

1. 

Department of Mathematical Sciences, National Chengchi University, 64, S-2 Zhi-nan Road, Taipei 116

2. 

Department of Mathematics & AIM-HI, National Chung Cheng University, Chiayi, Taiwan

Received  July 2012 Revised  December 2012 Published  March 2013

We consider the reaction-diffusion system $u_t=\delta u_{xx}-2uv/(\beta+u)$, $v_t=v_{xx}+uv/(\beta+u)$, which is used to model the acidic nitrate-ferroin reaction. Here $\beta$ is a positive constant, $u$ and $v$ represent the concentrations of the ferroin and acidic nitrate respectively, and $\delta$ denotes the ratio of the diffusion rates. The existence of travelling waves for this system is known. Using energy functionals, we provide a stability analysis of travelling waves.
Citation: Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041
References:
[1]

K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000).   Google Scholar

[2]

P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems,", Lecture Notes in Biomathematics, 28 (1979).   Google Scholar

[3]

S. Focant and Th. Gallay, Existence and stability of propagating fronts for an autocatalytic a reaction-diffusion system,, Physica D, 120 (1998), 346.  doi: 10.1016/S0167-2789(98)00096-7.  Google Scholar

[4]

S.-C. Fu, Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction,, Discrete Contin. Dyn. Syst., 16 (2011), 189.  doi: 10.3934/dcdsb.2011.16.189.  Google Scholar

[5]

S.-C. Fu, The existence of traveling wave fronts for a reaction-diffusion system modelling the acidic nitrate-ferroin reaction,, Quarterly Appl. Math., ().   Google Scholar

[6]

I. Lengyel, G. Pota and G. Bazsa, Wave profile in the acidic nitrate-ferroin reaction,, J. Chem. Soc. Faraday Trans., 87 (1991), 3613.   Google Scholar

[7]

Y. Li and Y. Wu, Stability of travelling waves with noncritical speeds for double degenerate Fisher-type equations,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 149.  doi: 10.3934/dcdsb.2008.10.149.  Google Scholar

[8]

Y. Li and Y. Wu, Stability of traveling front solutions with algebraic spatial decay for some autocatalytic chemical reaction systems,, SIAM J. Math. Anal., 44 (2012), 1474.  doi: 10.1137/100814974.  Google Scholar

[9]

J. H. Merkin and M. A. Sadiq, Reaction-diffision travelling waves in the acidic nitrate-ferroin reaction,, J. Math. Chem., 17 (1995), 357.  doi: 10.1007/BF01165755.  Google Scholar

[10]

J. D. Murray, "Mathematical Biology. I. An Introduction,", Springer-Verlag, (2004).   Google Scholar

[11]

A. Pazy, "Semigroup of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[12]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves,, Comm. Math. Phys., 164 (1994), 305.   Google Scholar

[13]

G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-ferroin reaction,, J. Chem. Soc. Faraday Trans., 85 (1989), 3871.   Google Scholar

[14]

G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-iron(II) reaction: Analytical description of the wave velocity,, J. Phys. Chem., 95 (1991), 4379.   Google Scholar

[15]

G. Raugel and K. Kirchgässner, Stability of fronts for a KPP-system. II. The critical case,, J. Differential Equations, 146 (1998), 399.  doi: 10.1006/jdeq.1997.3391.  Google Scholar

[16]

Y. Wu, X. Xing and Q. Ye, Stability of travelling waves with algebraic decay for n-degree Fisher-type equations,, Discrete Contin. Dyn. Syst., 16 (2006), 47.  doi: 10.3934/dcds.2006.16.47.  Google Scholar

[17]

Y. Wu and X. Xing, Stability of traveling waves with critical speeds for p-degree Fisher-type equations,, Discrete Contin. Dyn. Syst., 20 (2008), 1123.  doi: 10.3934/dcds.2008.20.1123.  Google Scholar

show all references

References:
[1]

K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000).   Google Scholar

[2]

P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems,", Lecture Notes in Biomathematics, 28 (1979).   Google Scholar

[3]

S. Focant and Th. Gallay, Existence and stability of propagating fronts for an autocatalytic a reaction-diffusion system,, Physica D, 120 (1998), 346.  doi: 10.1016/S0167-2789(98)00096-7.  Google Scholar

[4]

S.-C. Fu, Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction,, Discrete Contin. Dyn. Syst., 16 (2011), 189.  doi: 10.3934/dcdsb.2011.16.189.  Google Scholar

[5]

S.-C. Fu, The existence of traveling wave fronts for a reaction-diffusion system modelling the acidic nitrate-ferroin reaction,, Quarterly Appl. Math., ().   Google Scholar

[6]

I. Lengyel, G. Pota and G. Bazsa, Wave profile in the acidic nitrate-ferroin reaction,, J. Chem. Soc. Faraday Trans., 87 (1991), 3613.   Google Scholar

[7]

Y. Li and Y. Wu, Stability of travelling waves with noncritical speeds for double degenerate Fisher-type equations,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 149.  doi: 10.3934/dcdsb.2008.10.149.  Google Scholar

[8]

Y. Li and Y. Wu, Stability of traveling front solutions with algebraic spatial decay for some autocatalytic chemical reaction systems,, SIAM J. Math. Anal., 44 (2012), 1474.  doi: 10.1137/100814974.  Google Scholar

[9]

J. H. Merkin and M. A. Sadiq, Reaction-diffision travelling waves in the acidic nitrate-ferroin reaction,, J. Math. Chem., 17 (1995), 357.  doi: 10.1007/BF01165755.  Google Scholar

[10]

J. D. Murray, "Mathematical Biology. I. An Introduction,", Springer-Verlag, (2004).   Google Scholar

[11]

A. Pazy, "Semigroup of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[12]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves,, Comm. Math. Phys., 164 (1994), 305.   Google Scholar

[13]

G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-ferroin reaction,, J. Chem. Soc. Faraday Trans., 85 (1989), 3871.   Google Scholar

[14]

G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-iron(II) reaction: Analytical description of the wave velocity,, J. Phys. Chem., 95 (1991), 4379.   Google Scholar

[15]

G. Raugel and K. Kirchgässner, Stability of fronts for a KPP-system. II. The critical case,, J. Differential Equations, 146 (1998), 399.  doi: 10.1006/jdeq.1997.3391.  Google Scholar

[16]

Y. Wu, X. Xing and Q. Ye, Stability of travelling waves with algebraic decay for n-degree Fisher-type equations,, Discrete Contin. Dyn. Syst., 16 (2006), 47.  doi: 10.3934/dcds.2006.16.47.  Google Scholar

[17]

Y. Wu and X. Xing, Stability of traveling waves with critical speeds for p-degree Fisher-type equations,, Discrete Contin. Dyn. Syst., 20 (2008), 1123.  doi: 10.3934/dcds.2008.20.1123.  Google Scholar

[1]

Sheng-Chen Fu. Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 189-196. doi: 10.3934/dcdsb.2011.16.189

[2]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020001

[3]

Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41

[4]

Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242

[5]

Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks & Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369

[6]

C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872

[7]

H. J. Hupkes, L. Morelli. Travelling corners for spatially discrete reaction-diffusion systems. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1609-1667. doi: 10.3934/cpaa.2020058

[8]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[9]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[10]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[11]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[12]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[13]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[14]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[15]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[16]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[17]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[18]

Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115

[19]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[20]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]