\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction

Abstract Related Papers Cited by
  • We consider the reaction-diffusion system $u_t=\delta u_{xx}-2uv/(\beta+u)$, $v_t=v_{xx}+uv/(\beta+u)$, which is used to model the acidic nitrate-ferroin reaction. Here $\beta$ is a positive constant, $u$ and $v$ represent the concentrations of the ferroin and acidic nitrate respectively, and $\delta$ denotes the ratio of the diffusion rates. The existence of travelling waves for this system is known. Using energy functionals, we provide a stability analysis of travelling waves.
    Mathematics Subject Classification: Primary: 35K57, 35B35; Secondary: 35C07.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

    [2]

    P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems," Lecture Notes in Biomathematics, 28, Springer-Verlag, Berlin, 1979.

    [3]

    S. Focant and Th. Gallay, Existence and stability of propagating fronts for an autocatalytic a reaction-diffusion system, Physica D, 120 (1998), 346-368.doi: 10.1016/S0167-2789(98)00096-7.

    [4]

    S.-C. Fu, Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction, Discrete Contin. Dyn. Syst., 16 (2011), 189-196.doi: 10.3934/dcdsb.2011.16.189.

    [5]

    S.-C. FuThe existence of traveling wave fronts for a reaction-diffusion system modelling the acidic nitrate-ferroin reaction, Quarterly Appl. Math., to appear.

    [6]

    I. Lengyel, G. Pota and G. Bazsa, Wave profile in the acidic nitrate-ferroin reaction, J. Chem. Soc. Faraday Trans., 87 (1991), 3613-3615.

    [7]

    Y. Li and Y. Wu, Stability of travelling waves with noncritical speeds for double degenerate Fisher-type equations, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 149-170.doi: 10.3934/dcdsb.2008.10.149.

    [8]

    Y. Li and Y. Wu, Stability of traveling front solutions with algebraic spatial decay for some autocatalytic chemical reaction systems, SIAM J. Math. Anal., 44 (2012), 1474-1521.doi: 10.1137/100814974.

    [9]

    J. H. Merkin and M. A. Sadiq, Reaction-diffision travelling waves in the acidic nitrate-ferroin reaction, J. Math. Chem., 17 (1995), 357-375.doi: 10.1007/BF01165755.

    [10]

    J. D. Murray, "Mathematical Biology. I. An Introduction," Springer-Verlag, New York, 2004.

    [11]

    A. Pazy, "Semigroup of Linear Operators and Applications to Partial Differential Equations," Springer-Verlag, Berling, 1983.doi: 10.1007/978-1-4612-5561-1.

    [12]

    R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 164 (1994), 305-349.

    [13]

    G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-ferroin reaction, J. Chem. Soc. Faraday Trans., 85 (1989), 3871-3877.

    [14]

    G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-iron(II) reaction: Analytical description of the wave velocity, J. Phys. Chem., 95 (1991), 4379-4381.

    [15]

    G. Raugel and K. Kirchgässner, Stability of fronts for a KPP-system. II. The critical case, J. Differential Equations, 146 (1998), 399-456.doi: 10.1006/jdeq.1997.3391.

    [16]

    Y. Wu, X. Xing and Q. Ye, Stability of travelling waves with algebraic decay for n-degree Fisher-type equations, Discrete Contin. Dyn. Syst., 16 (2006), 47-66.doi: 10.3934/dcds.2006.16.47.

    [17]

    Y. Wu and X. Xing, Stability of traveling waves with critical speeds for p-degree Fisher-type equations, Discrete Contin. Dyn. Syst., 20 (2008), 1123-1139.doi: 10.3934/dcds.2008.20.1123.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return