September  2013, 33(9): 4071-4093. doi: 10.3934/dcds.2013.33.4071

Heteroclinic limit cycles in competitive Kolmogorov systems

1. 

School of Computing, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, United Kingdom

2. 

Department of Mathematics, UCL, Gower Street, London WC1E 6BT, United Kingdom

Received  May 2012 Revised  January 2013 Published  March 2013

A notion of global attraction and repulsion of heteroclinic limit cycles is introduced for strongly competitive Kolmogorov systems. Conditions are obtained for the existence of cycles linking the full set of axial equilibria and their global asymptotic behaviour on the carrying simplex. The global dynamics of systems with a heteroclinic limit cycle is studied. Results are also obtained for Kolmogorov systems where some components vanish as $t\rightarrow \pm \infty$.
Citation: Zhanyuan Hou, Stephen Baigent. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4071-4093. doi: 10.3934/dcds.2013.33.4071
References:
[1]

V. S. Afraimovich, M. I. Raminovich and P. Varona, Heteroclinic contours in neural ensembles and the winnerless competition principle,, Internat. J. Bifur. Chaos, 14 (2004), 1195. doi: 10.1142/S0218127404009806. Google Scholar

[2]

P. Ashwin, O. Burylkob and Y. Maistrenko, Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators,, Physica D, 237 (2008), 454. doi: 10.1016/j.physd.2007.09.015. Google Scholar

[3]

S. Baigent and Z. Hou, Global stability of interior and boundary fixed points for Lotka-Volterra systems,, Diff. Eq. Dyn. Syst., 20 (2012), 53. doi: 10.1007/s12591-012-0103-0. Google Scholar

[4]

G. Butler and P. Waltman, Persistence in dynamical systems,, J. Diff. Eq., 63 (1996), 255. doi: 10.1016/0022-0396(86)90049-5. Google Scholar

[5]

C. Chi, S. Hsu and L. Wu, On the asymmetric May-Leonard model of three competing species,, SIAM J. Appl. Math., 58 (1998), 211. doi: 10.1137/S0036139994272060. Google Scholar

[6]

M. Corbera, J. Llibre and M. A. Teixeira, Symmetric periodic orbits near a heteroclinic loop in $R^3$ formed by two singular points, a semistable periodic orbit and their invariant manifolds,, Physica D, 238 (2009), 699. doi: 10.1016/j.physd.2009.01.002. Google Scholar

[7]

B. Feng, The heteroclinic cycle in the model of competition between $n$ species and its stability,, Acta Mathematicae Applicatae Sinica, 14 (1998), 404. doi: 10.1007/BF02683825. Google Scholar

[8]

M. Field and J. W. Swift, Stationary bifurcation to limit cycles and heteroclinic cycles,, Nonlinearity, 4 (1991), 1001. Google Scholar

[9]

M. Krupa and I. Melborne, Asymptotic stability of heteroclinic cycles in systems with symmetry,, Ergo. Th. & Dynam. Sys., 15 (1995), 121. doi: 10.1017/S0143385700008270. Google Scholar

[10]

M. Krupa and I. Melborne, Asymptotic stability of heteroclinic cycles in systems with symmetry. II,, Proc. Roy. Soc. Edin., 134A (2004), 1177. doi: 10.1017/S0308210500003693. Google Scholar

[11]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative III: competing species,, Nonlinearity, 1 (1988), 51. Google Scholar

[12]

J. Hofbauer and K. Sigmund, On the stabilizing effect of predators and competitors on ecological communities,, J. Math. Biol., 27 (1989), 537. doi: 10.1007/BF00288433. Google Scholar

[13]

J. Hofbauer, Heteroclinic cycles in ecological differential equations,, Tatra Mountains Math. Publ., 4 (1994), 105. Google Scholar

[14]

J. Hofbauer and K. Sigmund, "The Theory of Evolution and Dynamical Systems,", Cambridge University Press, (1998). Google Scholar

[15]

Z. Hou, Vanishing components in autonomous competitive Lotka-Volterra systems,, J. Math. Anal. Appl., 359 (2009), 302. doi: 10.1016/j.jmaa.2009.05.054. Google Scholar

[16]

Z. Hou and S. Baigent, Fixed point global attractors and repellors in competitive Lotka-Volterra systems,, Dyn. Syst., 26 (2011), 367. doi: 10.1080/14689367.2011.554384. Google Scholar

[17]

S.-B. Hsu and L.-I. W. Roeger, Heteroclinic cycles in the chemostat models and the winnerless competition principle,, J. Math. Anal. Appl., 360 (2009), 599. doi: 10.1016/j.jmaa.2009.07.006. Google Scholar

[18]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, SIAM J. Appl. Math., 29 (1975), 243. Google Scholar

[19]

K. Orihashi and Y. Aizawa, Global aspects of turbulence induced by heteroclinic cycles in competitive diffusion Lotka-Volterra equation,, Physica D, 240 (2011), 1853. Google Scholar

[20]

H. L. Smith, Periodic orbits of competitive and cooperative systems,, J. Diff. Eq., 65 (1986), 361. doi: 10.1016/0022-0396(86)90024-0. Google Scholar

[21]

H. L. Smith and P. Waltman, "The Theory of the Chemostat,", Cambridge University Press, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[22]

H. Smith, "Monotone Dynamical Systems, An Introduction to Theory of Competitive and Cooperative Systems,", Math. Surveys Monogr., 41 (1995). Google Scholar

[23]

Y. Takeuchi, "Global Dynamical Properties of Lotka-Volterra Systems,", World Scentific, (1996). doi: 10.1142/9789812830548. Google Scholar

[24]

A. Tineo, Necessary and sufficient conditions for extinction of one species,, Adv. Nonlinear Stud., 5 (2005), 57. Google Scholar

[25]

D. Xiao and W. Li, Limit cycles for the competitive three dimensional Lotka-Volterra system,, J. Diff. Eq., 164 (2000), 1. doi: 10.1006/jdeq.1999.3729. Google Scholar

[26]

E. C. Zeeman and M. L. Zeeman, An $n$-dimensional Lotka-Volterra system is generically determined by the edges of its carrying simplex,, Nonlinearity, 15 (2002), 2019. doi: 10.1088/0951-7715/15/6/312. Google Scholar

[27]

E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems,, Trans. Amer. Math. Soc., 355 (2003), 713. doi: 10.1090/S0002-9947-02-03103-3. Google Scholar

[28]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems,, Dyn. Stab. Syst., 8 (1993), 189. Google Scholar

[29]

X.-A. Zhang and L. Chen, The global dynamic behaviour of the competition model of three species,, J. Math. Anal. and Appl., 245 (2000), 124. doi: 10.1006/jmaa.2000.6742. Google Scholar

show all references

References:
[1]

V. S. Afraimovich, M. I. Raminovich and P. Varona, Heteroclinic contours in neural ensembles and the winnerless competition principle,, Internat. J. Bifur. Chaos, 14 (2004), 1195. doi: 10.1142/S0218127404009806. Google Scholar

[2]

P. Ashwin, O. Burylkob and Y. Maistrenko, Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators,, Physica D, 237 (2008), 454. doi: 10.1016/j.physd.2007.09.015. Google Scholar

[3]

S. Baigent and Z. Hou, Global stability of interior and boundary fixed points for Lotka-Volterra systems,, Diff. Eq. Dyn. Syst., 20 (2012), 53. doi: 10.1007/s12591-012-0103-0. Google Scholar

[4]

G. Butler and P. Waltman, Persistence in dynamical systems,, J. Diff. Eq., 63 (1996), 255. doi: 10.1016/0022-0396(86)90049-5. Google Scholar

[5]

C. Chi, S. Hsu and L. Wu, On the asymmetric May-Leonard model of three competing species,, SIAM J. Appl. Math., 58 (1998), 211. doi: 10.1137/S0036139994272060. Google Scholar

[6]

M. Corbera, J. Llibre and M. A. Teixeira, Symmetric periodic orbits near a heteroclinic loop in $R^3$ formed by two singular points, a semistable periodic orbit and their invariant manifolds,, Physica D, 238 (2009), 699. doi: 10.1016/j.physd.2009.01.002. Google Scholar

[7]

B. Feng, The heteroclinic cycle in the model of competition between $n$ species and its stability,, Acta Mathematicae Applicatae Sinica, 14 (1998), 404. doi: 10.1007/BF02683825. Google Scholar

[8]

M. Field and J. W. Swift, Stationary bifurcation to limit cycles and heteroclinic cycles,, Nonlinearity, 4 (1991), 1001. Google Scholar

[9]

M. Krupa and I. Melborne, Asymptotic stability of heteroclinic cycles in systems with symmetry,, Ergo. Th. & Dynam. Sys., 15 (1995), 121. doi: 10.1017/S0143385700008270. Google Scholar

[10]

M. Krupa and I. Melborne, Asymptotic stability of heteroclinic cycles in systems with symmetry. II,, Proc. Roy. Soc. Edin., 134A (2004), 1177. doi: 10.1017/S0308210500003693. Google Scholar

[11]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative III: competing species,, Nonlinearity, 1 (1988), 51. Google Scholar

[12]

J. Hofbauer and K. Sigmund, On the stabilizing effect of predators and competitors on ecological communities,, J. Math. Biol., 27 (1989), 537. doi: 10.1007/BF00288433. Google Scholar

[13]

J. Hofbauer, Heteroclinic cycles in ecological differential equations,, Tatra Mountains Math. Publ., 4 (1994), 105. Google Scholar

[14]

J. Hofbauer and K. Sigmund, "The Theory of Evolution and Dynamical Systems,", Cambridge University Press, (1998). Google Scholar

[15]

Z. Hou, Vanishing components in autonomous competitive Lotka-Volterra systems,, J. Math. Anal. Appl., 359 (2009), 302. doi: 10.1016/j.jmaa.2009.05.054. Google Scholar

[16]

Z. Hou and S. Baigent, Fixed point global attractors and repellors in competitive Lotka-Volterra systems,, Dyn. Syst., 26 (2011), 367. doi: 10.1080/14689367.2011.554384. Google Scholar

[17]

S.-B. Hsu and L.-I. W. Roeger, Heteroclinic cycles in the chemostat models and the winnerless competition principle,, J. Math. Anal. Appl., 360 (2009), 599. doi: 10.1016/j.jmaa.2009.07.006. Google Scholar

[18]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, SIAM J. Appl. Math., 29 (1975), 243. Google Scholar

[19]

K. Orihashi and Y. Aizawa, Global aspects of turbulence induced by heteroclinic cycles in competitive diffusion Lotka-Volterra equation,, Physica D, 240 (2011), 1853. Google Scholar

[20]

H. L. Smith, Periodic orbits of competitive and cooperative systems,, J. Diff. Eq., 65 (1986), 361. doi: 10.1016/0022-0396(86)90024-0. Google Scholar

[21]

H. L. Smith and P. Waltman, "The Theory of the Chemostat,", Cambridge University Press, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[22]

H. Smith, "Monotone Dynamical Systems, An Introduction to Theory of Competitive and Cooperative Systems,", Math. Surveys Monogr., 41 (1995). Google Scholar

[23]

Y. Takeuchi, "Global Dynamical Properties of Lotka-Volterra Systems,", World Scentific, (1996). doi: 10.1142/9789812830548. Google Scholar

[24]

A. Tineo, Necessary and sufficient conditions for extinction of one species,, Adv. Nonlinear Stud., 5 (2005), 57. Google Scholar

[25]

D. Xiao and W. Li, Limit cycles for the competitive three dimensional Lotka-Volterra system,, J. Diff. Eq., 164 (2000), 1. doi: 10.1006/jdeq.1999.3729. Google Scholar

[26]

E. C. Zeeman and M. L. Zeeman, An $n$-dimensional Lotka-Volterra system is generically determined by the edges of its carrying simplex,, Nonlinearity, 15 (2002), 2019. doi: 10.1088/0951-7715/15/6/312. Google Scholar

[27]

E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems,, Trans. Amer. Math. Soc., 355 (2003), 713. doi: 10.1090/S0002-9947-02-03103-3. Google Scholar

[28]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems,, Dyn. Stab. Syst., 8 (1993), 189. Google Scholar

[29]

X.-A. Zhang and L. Chen, The global dynamic behaviour of the competition model of three species,, J. Math. Anal. and Appl., 245 (2000), 124. doi: 10.1006/jmaa.2000.6742. Google Scholar

[1]

Mats Gyllenberg, Ping Yan. On the number of limit cycles for three dimensional Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 347-352. doi: 10.3934/dcdsb.2009.11.347

[2]

Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747

[3]

Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012

[4]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

[5]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[6]

Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137

[7]

Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477

[8]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[9]

Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1

[10]

Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495

[11]

Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291

[12]

Zhanyuan Hou, Stephen Baigent. Global stability and repulsion in autonomous Kolmogorov systems. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1205-1238. doi: 10.3934/cpaa.2015.14.1205

[13]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[14]

Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771

[15]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[16]

Norimichi Hirano, Wieslaw Krawcewicz, Haibo Ruan. Existence of nonstationary periodic solutions for $\Gamma$-symmetric Lotka-Volterra type systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 709-735. doi: 10.3934/dcds.2011.30.709

[17]

Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111

[18]

C. M. Evans, G. L. Findley. Analytic solutions to a class of two-dimensional Lotka-Volterra dynamical systems. Conference Publications, 2001, 2001 (Special) : 137-142. doi: 10.3934/proc.2001.2001.137

[19]

Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069

[20]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]