-
Previous Article
Simple skew category algebras associated with minimal partially defined dynamical systems
- DCDS Home
- This Issue
-
Next Article
Resonant decomposition and the $I$-method for the two-dimensional Zakharov system
The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula
1. | School of Mathematical Sciences, Peking University, Beijing 100871, China |
2. | BICMR and LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China |
References:
[1] |
L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. |
[2] |
J. Bahnmüller and P.-D. Liu, Characterization of measures satisfying the Pesin entropy formula for random dynamical systems, J. Dynam. Differential Equations, 10 (1998), 425-448.
doi: 10.1023/A:1022653229891. |
[3] |
T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems,, Random Comput. Dynam., 1 (): 99.
|
[4] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[5] |
H. Crauel, "Random Probability Measures on Polish Spaces," Stochastics Monographs, 11, Taylor & Francis, London, 2002. |
[6] |
J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.
doi: 10.1103/RevModPhys.57.617. |
[7] |
G. Froyland, S. Lloyd and A. Quas, Coherent structures and isolated spectrum for Perron-Frobenius cocycles, Ergodic Theory Dynam. Systems, 30 (2010), 729-756.
doi: 10.1017/S0143385709000339. |
[8] |
A. Katok and J.-M. Strelcyn, "Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities," with the collab. of F. Ledrappier and F. Przytycki, Lecture Notes in Mathematics, 1222, Springer-Verlag, Berlin, 1986. |
[9] |
F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, (French) [Ergodic properties of Sinaï measures], Inst. Hautes Études Sci. Publ. Math., No. 59 (1984), 163-188. |
[10] |
F. Ledrappier and J.-M. Strelcyn, A proof of the estimation from below in Pesin's entropy formula, Ergodic Theory Dynam. Systems, 2 (1982), 203-219.
doi: 10.1017/S0143385700001528. |
[11] |
F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509-539; The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. of Math. (2), 122 (1985), 540-574. |
[12] |
F. Ledrappier and L.-S. Young, Entropy formula for random transformations, Probab. Theory Related Fields, 80 (1988), 217-240.
doi: 10.1007/BF00356103. |
[13] |
Z.-M. Li and L. Shu, The metric entropy of random dynamical systems in a Banach space: Ruelle inequality,, to appear in Ergodic Theory Dynam. Systems., ().
|
[14] |
Z. Lian and K.-N. Lu, "Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space," Memoirs of AMS, 2009. |
[15] |
P.-D. Liu and M. Qian, "Smooth Ergodic Theory of Random Dynamical Systems," Lecture Notes in Mathematics, 1606, Springer-Verlag, Berlin, 1995. |
[16] |
P.-D. Liu, Pesin's entropy formula for endomorphisms, Nagoya Math. J., 150 (1998), 197-209. |
[17] |
R. Mañé, A proof of Pesin's formula, Ergodic Theory Dynam. Systems, 1 (1981), 95-102. |
[18] |
R. Mañé, Lyapounov exponents and stable manifolds for compact transformations, in "Geometric Dynamics" (Rio de Janeiro, 1981), Lecture Notes in Mathematics, 1007, Springer, Berlin, (1983), 522-577.
doi: 10.1007/BFb0061433. |
[19] |
V.-I. Oseledeč, A multiplicative ergodic theorem. Characteristic Lyapunov numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-221. |
[20] |
R.-R. Phelps, "Lectures on Choquet's Theorem," D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. |
[21] |
M. Qian and Z. S. Zhang, Ergodic theory for Axiom A endomorphisms, Ergodic Theory Dynam. Systems, 15 (1995), 161-174.
doi: 10.1017/S0143385700008294. |
[22] |
M. Qian and S. Zhu, SRB measures and Pesin's entropy formula for endomorphisms, Trans. Amer. Math. Soc., 354 (2002), 1453-1471.
doi: 10.1090/S0002-9947-01-02792-1. |
[23] |
D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2), 115 (1982), 243-290.
doi: 10.2307/1971392. |
[24] |
D. Ruelle, Characteristic exponents for a viscous fluid subjected to time dependent forces, Comm. Math. Phys., 93 (1984), 285-300. |
[25] |
K.-U. Schaumlöffel, "Zufällige Evolutionsoperatoren Für Stochastische Partielle Differentialgleichungen," Dissertation, Universität Bremen, 1990. |
[26] |
K.-U. Schaumlöffel and F. Flandoli, A multiplicative ergodic theorem with applications to a first order stochastic hyperbolic equation in a bounded domain, Stochastics Stochastics Rep., 34 (1991), 241-255. |
[27] |
P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension, (French) [Asymptotically compact dynamic bundles. Lyapunov exponents. Entropy. Dimension], Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 49-97. |
[28] |
P. Thieullen, Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems, J. Dynam. Differential Equations, 4 (1992), 127-159.
doi: 10.1007/BF01048158. |
[29] |
P. Thieullen, Fibres dynamiques. Entropie et dimension, (French) [Dynamical bundles. Entropy and dimension], Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 119-146. |
[30] |
P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
show all references
References:
[1] |
L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. |
[2] |
J. Bahnmüller and P.-D. Liu, Characterization of measures satisfying the Pesin entropy formula for random dynamical systems, J. Dynam. Differential Equations, 10 (1998), 425-448.
doi: 10.1023/A:1022653229891. |
[3] |
T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems,, Random Comput. Dynam., 1 (): 99.
|
[4] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[5] |
H. Crauel, "Random Probability Measures on Polish Spaces," Stochastics Monographs, 11, Taylor & Francis, London, 2002. |
[6] |
J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.
doi: 10.1103/RevModPhys.57.617. |
[7] |
G. Froyland, S. Lloyd and A. Quas, Coherent structures and isolated spectrum for Perron-Frobenius cocycles, Ergodic Theory Dynam. Systems, 30 (2010), 729-756.
doi: 10.1017/S0143385709000339. |
[8] |
A. Katok and J.-M. Strelcyn, "Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities," with the collab. of F. Ledrappier and F. Przytycki, Lecture Notes in Mathematics, 1222, Springer-Verlag, Berlin, 1986. |
[9] |
F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, (French) [Ergodic properties of Sinaï measures], Inst. Hautes Études Sci. Publ. Math., No. 59 (1984), 163-188. |
[10] |
F. Ledrappier and J.-M. Strelcyn, A proof of the estimation from below in Pesin's entropy formula, Ergodic Theory Dynam. Systems, 2 (1982), 203-219.
doi: 10.1017/S0143385700001528. |
[11] |
F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509-539; The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. of Math. (2), 122 (1985), 540-574. |
[12] |
F. Ledrappier and L.-S. Young, Entropy formula for random transformations, Probab. Theory Related Fields, 80 (1988), 217-240.
doi: 10.1007/BF00356103. |
[13] |
Z.-M. Li and L. Shu, The metric entropy of random dynamical systems in a Banach space: Ruelle inequality,, to appear in Ergodic Theory Dynam. Systems., ().
|
[14] |
Z. Lian and K.-N. Lu, "Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space," Memoirs of AMS, 2009. |
[15] |
P.-D. Liu and M. Qian, "Smooth Ergodic Theory of Random Dynamical Systems," Lecture Notes in Mathematics, 1606, Springer-Verlag, Berlin, 1995. |
[16] |
P.-D. Liu, Pesin's entropy formula for endomorphisms, Nagoya Math. J., 150 (1998), 197-209. |
[17] |
R. Mañé, A proof of Pesin's formula, Ergodic Theory Dynam. Systems, 1 (1981), 95-102. |
[18] |
R. Mañé, Lyapounov exponents and stable manifolds for compact transformations, in "Geometric Dynamics" (Rio de Janeiro, 1981), Lecture Notes in Mathematics, 1007, Springer, Berlin, (1983), 522-577.
doi: 10.1007/BFb0061433. |
[19] |
V.-I. Oseledeč, A multiplicative ergodic theorem. Characteristic Lyapunov numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-221. |
[20] |
R.-R. Phelps, "Lectures on Choquet's Theorem," D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. |
[21] |
M. Qian and Z. S. Zhang, Ergodic theory for Axiom A endomorphisms, Ergodic Theory Dynam. Systems, 15 (1995), 161-174.
doi: 10.1017/S0143385700008294. |
[22] |
M. Qian and S. Zhu, SRB measures and Pesin's entropy formula for endomorphisms, Trans. Amer. Math. Soc., 354 (2002), 1453-1471.
doi: 10.1090/S0002-9947-01-02792-1. |
[23] |
D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2), 115 (1982), 243-290.
doi: 10.2307/1971392. |
[24] |
D. Ruelle, Characteristic exponents for a viscous fluid subjected to time dependent forces, Comm. Math. Phys., 93 (1984), 285-300. |
[25] |
K.-U. Schaumlöffel, "Zufällige Evolutionsoperatoren Für Stochastische Partielle Differentialgleichungen," Dissertation, Universität Bremen, 1990. |
[26] |
K.-U. Schaumlöffel and F. Flandoli, A multiplicative ergodic theorem with applications to a first order stochastic hyperbolic equation in a bounded domain, Stochastics Stochastics Rep., 34 (1991), 241-255. |
[27] |
P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension, (French) [Asymptotically compact dynamic bundles. Lyapunov exponents. Entropy. Dimension], Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 49-97. |
[28] |
P. Thieullen, Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems, J. Dynam. Differential Equations, 4 (1992), 127-159.
doi: 10.1007/BF01048158. |
[29] |
P. Thieullen, Fibres dynamiques. Entropie et dimension, (French) [Dynamical bundles. Entropy and dimension], Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 119-146. |
[30] |
P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[1] |
Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149 |
[2] |
Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303 |
[3] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281 |
[4] |
J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731 |
[5] |
Yujun Zhu. Preimage entropy for random dynamical systems. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829 |
[6] |
Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517 |
[7] |
Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069 |
[8] |
Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407 |
[9] |
Chunyan Zhao, Chengkui Zhong, Xiangming Zhu. Existence of compact $ \varphi $-attracting sets and estimate of their attractive velocity for infinite-dimensional dynamical systems. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022051 |
[10] |
Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207 |
[11] |
Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control and Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83 |
[12] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 821-836. doi: 10.3934/dcdsb.2021066 |
[13] |
Renhai Wang, Bixiang Wang. Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2461-2493. doi: 10.3934/dcdsb.2020019 |
[14] |
Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial and Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15 |
[15] |
Savin Treanţă. On a class of differential quasi-variational-hemivariational inequalities in infinite-dimensional Banach spaces. Evolution Equations and Control Theory, 2022, 11 (3) : 827-836. doi: 10.3934/eect.2021027 |
[16] |
Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122 |
[17] |
Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012 |
[18] |
Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117-138. doi: 10.3934/puqr.2021006 |
[19] |
Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations and Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072 |
[20] |
Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]