September  2013, 33(9): 4123-4155. doi: 10.3934/dcds.2013.33.4123

The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula

1. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

BICMR and LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

Received  October 2010 Revised  December 2012 Published  March 2013

Consider a random cocycle $\Phi$ on a separable infinite-dimensional Hilbert space preserving a probability measure $\mu$, which is supported on a random compact set $K$. We show that if $\Phi$ is $C^2$ (over $K$) and satisfies some mild integrable conditions of the differentials, then Pesin's entropy formula holds if $\mu$ has absolutely continuous conditional measures on the unstable manifolds. The converse is also true under an additional condition on $K$ when the system has no zero Lyapunov exponent.
Citation: Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123
References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

J. Bahnmüller and P.-D. Liu, Characterization of measures satisfying the Pesin entropy formula for random dynamical systems,, J. Dynam. Differential Equations, 10 (1998), 425.  doi: 10.1023/A:1022653229891.  Google Scholar

[3]

T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems,, Random Comput. Dynam., 1 (): 99.   Google Scholar

[4]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[5]

H. Crauel, "Random Probability Measures on Polish Spaces,", Stochastics Monographs, 11 (2002).   Google Scholar

[6]

J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors,, Rev. Modern Phys., 57 (1985), 617.  doi: 10.1103/RevModPhys.57.617.  Google Scholar

[7]

G. Froyland, S. Lloyd and A. Quas, Coherent structures and isolated spectrum for Perron-Frobenius cocycles,, Ergodic Theory Dynam. Systems, 30 (2010), 729.  doi: 10.1017/S0143385709000339.  Google Scholar

[8]

A. Katok and J.-M. Strelcyn, "Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities,", with the collab. of F. Ledrappier and F. Przytycki, 1222 (1986).   Google Scholar

[9]

F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, (French) [Ergodic properties of Sinaï measures],, Inst. Hautes Études Sci. Publ. Math., (1984), 163.   Google Scholar

[10]

F. Ledrappier and J.-M. Strelcyn, A proof of the estimation from below in Pesin's entropy formula,, Ergodic Theory Dynam. Systems, 2 (1982), 203.  doi: 10.1017/S0143385700001528.  Google Scholar

[11]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509.   Google Scholar

[12]

F. Ledrappier and L.-S. Young, Entropy formula for random transformations,, Probab. Theory Related Fields, 80 (1988), 217.  doi: 10.1007/BF00356103.  Google Scholar

[13]

Z.-M. Li and L. Shu, The metric entropy of random dynamical systems in a Banach space: Ruelle inequality,, to appear in Ergodic Theory Dynam. Systems., ().   Google Scholar

[14]

Z. Lian and K.-N. Lu, "Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space,", Memoirs of AMS, (2009).   Google Scholar

[15]

P.-D. Liu and M. Qian, "Smooth Ergodic Theory of Random Dynamical Systems,", Lecture Notes in Mathematics, 1606 (1995).   Google Scholar

[16]

P.-D. Liu, Pesin's entropy formula for endomorphisms,, Nagoya Math. J., 150 (1998), 197.   Google Scholar

[17]

R. Mañé, A proof of Pesin's formula,, Ergodic Theory Dynam. Systems, 1 (1981), 95.   Google Scholar

[18]

R. Mañé, Lyapounov exponents and stable manifolds for compact transformations,, in, 1007 (1983), 522.  doi: 10.1007/BFb0061433.  Google Scholar

[19]

V.-I. Oseledeč, A multiplicative ergodic theorem. Characteristic Lyapunov numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 197.   Google Scholar

[20]

R.-R. Phelps, "Lectures on Choquet's Theorem,", D. Van Nostrand Co., (1966).   Google Scholar

[21]

M. Qian and Z. S. Zhang, Ergodic theory for Axiom A endomorphisms,, Ergodic Theory Dynam. Systems, 15 (1995), 161.  doi: 10.1017/S0143385700008294.  Google Scholar

[22]

M. Qian and S. Zhu, SRB measures and Pesin's entropy formula for endomorphisms,, Trans. Amer. Math. Soc., 354 (2002), 1453.  doi: 10.1090/S0002-9947-01-02792-1.  Google Scholar

[23]

D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space,, Ann. of Math. (2), 115 (1982), 243.  doi: 10.2307/1971392.  Google Scholar

[24]

D. Ruelle, Characteristic exponents for a viscous fluid subjected to time dependent forces,, Comm. Math. Phys., 93 (1984), 285.   Google Scholar

[25]

K.-U. Schaumlöffel, "Zufällige Evolutionsoperatoren Für Stochastische Partielle Differentialgleichungen,", Dissertation, (1990).   Google Scholar

[26]

K.-U. Schaumlöffel and F. Flandoli, A multiplicative ergodic theorem with applications to a first order stochastic hyperbolic equation in a bounded domain,, Stochastics Stochastics Rep., 34 (1991), 241.   Google Scholar

[27]

P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension, (French) [Asymptotically compact dynamic bundles. Lyapunov exponents. Entropy. Dimension],, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 49.   Google Scholar

[28]

P. Thieullen, Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems,, J. Dynam. Differential Equations, 4 (1992), 127.  doi: 10.1007/BF01048158.  Google Scholar

[29]

P. Thieullen, Fibres dynamiques. Entropie et dimension, (French) [Dynamical bundles. Entropy and dimension],, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 119.   Google Scholar

[30]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).   Google Scholar

show all references

References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

J. Bahnmüller and P.-D. Liu, Characterization of measures satisfying the Pesin entropy formula for random dynamical systems,, J. Dynam. Differential Equations, 10 (1998), 425.  doi: 10.1023/A:1022653229891.  Google Scholar

[3]

T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems,, Random Comput. Dynam., 1 (): 99.   Google Scholar

[4]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[5]

H. Crauel, "Random Probability Measures on Polish Spaces,", Stochastics Monographs, 11 (2002).   Google Scholar

[6]

J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors,, Rev. Modern Phys., 57 (1985), 617.  doi: 10.1103/RevModPhys.57.617.  Google Scholar

[7]

G. Froyland, S. Lloyd and A. Quas, Coherent structures and isolated spectrum for Perron-Frobenius cocycles,, Ergodic Theory Dynam. Systems, 30 (2010), 729.  doi: 10.1017/S0143385709000339.  Google Scholar

[8]

A. Katok and J.-M. Strelcyn, "Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities,", with the collab. of F. Ledrappier and F. Przytycki, 1222 (1986).   Google Scholar

[9]

F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, (French) [Ergodic properties of Sinaï measures],, Inst. Hautes Études Sci. Publ. Math., (1984), 163.   Google Scholar

[10]

F. Ledrappier and J.-M. Strelcyn, A proof of the estimation from below in Pesin's entropy formula,, Ergodic Theory Dynam. Systems, 2 (1982), 203.  doi: 10.1017/S0143385700001528.  Google Scholar

[11]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509.   Google Scholar

[12]

F. Ledrappier and L.-S. Young, Entropy formula for random transformations,, Probab. Theory Related Fields, 80 (1988), 217.  doi: 10.1007/BF00356103.  Google Scholar

[13]

Z.-M. Li and L. Shu, The metric entropy of random dynamical systems in a Banach space: Ruelle inequality,, to appear in Ergodic Theory Dynam. Systems., ().   Google Scholar

[14]

Z. Lian and K.-N. Lu, "Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space,", Memoirs of AMS, (2009).   Google Scholar

[15]

P.-D. Liu and M. Qian, "Smooth Ergodic Theory of Random Dynamical Systems,", Lecture Notes in Mathematics, 1606 (1995).   Google Scholar

[16]

P.-D. Liu, Pesin's entropy formula for endomorphisms,, Nagoya Math. J., 150 (1998), 197.   Google Scholar

[17]

R. Mañé, A proof of Pesin's formula,, Ergodic Theory Dynam. Systems, 1 (1981), 95.   Google Scholar

[18]

R. Mañé, Lyapounov exponents and stable manifolds for compact transformations,, in, 1007 (1983), 522.  doi: 10.1007/BFb0061433.  Google Scholar

[19]

V.-I. Oseledeč, A multiplicative ergodic theorem. Characteristic Lyapunov numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 197.   Google Scholar

[20]

R.-R. Phelps, "Lectures on Choquet's Theorem,", D. Van Nostrand Co., (1966).   Google Scholar

[21]

M. Qian and Z. S. Zhang, Ergodic theory for Axiom A endomorphisms,, Ergodic Theory Dynam. Systems, 15 (1995), 161.  doi: 10.1017/S0143385700008294.  Google Scholar

[22]

M. Qian and S. Zhu, SRB measures and Pesin's entropy formula for endomorphisms,, Trans. Amer. Math. Soc., 354 (2002), 1453.  doi: 10.1090/S0002-9947-01-02792-1.  Google Scholar

[23]

D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space,, Ann. of Math. (2), 115 (1982), 243.  doi: 10.2307/1971392.  Google Scholar

[24]

D. Ruelle, Characteristic exponents for a viscous fluid subjected to time dependent forces,, Comm. Math. Phys., 93 (1984), 285.   Google Scholar

[25]

K.-U. Schaumlöffel, "Zufällige Evolutionsoperatoren Für Stochastische Partielle Differentialgleichungen,", Dissertation, (1990).   Google Scholar

[26]

K.-U. Schaumlöffel and F. Flandoli, A multiplicative ergodic theorem with applications to a first order stochastic hyperbolic equation in a bounded domain,, Stochastics Stochastics Rep., 34 (1991), 241.   Google Scholar

[27]

P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension, (French) [Asymptotically compact dynamic bundles. Lyapunov exponents. Entropy. Dimension],, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 49.   Google Scholar

[28]

P. Thieullen, Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems,, J. Dynam. Differential Equations, 4 (1992), 127.  doi: 10.1007/BF01048158.  Google Scholar

[29]

P. Thieullen, Fibres dynamiques. Entropie et dimension, (French) [Dynamical bundles. Entropy and dimension],, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 119.   Google Scholar

[30]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).   Google Scholar

[1]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[2]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[7]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[10]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[13]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[14]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[15]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[16]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[17]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[20]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]