-
Previous Article
Archimedean ice
- DCDS Home
- This Issue
-
Next Article
Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts
Spectral multiplicities for ergodic flows
1. | Institute for Low Temperature Physics & Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov, 61164, Ukraine |
2. | Faculty of Mathematics and Computer Science, N. Copernicus University, ul. Chopina 12/18, 87-100 Toruń |
References:
[1] |
O. N. Ageev, On ergodic transformations with homogeneous spectrum,, J. Dynam. Control Systems 5 (1999), 5 (1999), 149. Google Scholar |
[2] |
A. I. Danilenko, $(C,F)$-actions in ergodic theory,, Progr. Math. 265 (2008), 265 (2008), 325. Google Scholar |
[3] |
A. I. Danilenko, Explicit solution of Rokhlin's problem on homogeneous spectrum and applications,, Ergod. Th. & Dyn. Syst. 26 (2006), 26 (2006), 1467. Google Scholar |
[4] |
A. I. Danilenko, On new spectral multiplicities for ergodic maps,, Studia Math. 197 (2010), 197 (2010), 57. Google Scholar |
[5] |
A. I. Danilenko and S. V. Solomko, Ergodic Abelian actions with homogeneous spectrum,, Contemp. Math. 532 (2010), 532 (2010), 137. Google Scholar |
[6] |
I. Filipowicz, Product $Z^d$-actions on a Lebesgue space and their applications,, Studia Math. 122 (1997), 122 (1997), 289. Google Scholar |
[7] |
K. Frączek, Cyclic space isomorphism of unitary operators,, Studia Math. 124 (1997), 124 (1997), 259. Google Scholar |
[8] |
G. R. Goodson, A survey of recent results in the spectral theory of ergodic dynamical systems,, J. Dynam. Control Systems 5 (1999), 5 (1999), 173. Google Scholar |
[9] |
E. Hewitt and K. A. Ross, "Abstract Harmonic Analysis'',, Vol. I, (1963). Google Scholar |
[10] |
A. Katok and M. Lemańczyk, Some new cases of realization of spectral multiplicity function for ergodic transformations,, Fund. Math. 206 (2009), 206 (2009), 185. Google Scholar |
[11] |
A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory,, in, (2006), 649. Google Scholar |
[12] |
R. A. Konev and V. V. Ryzhikov, On spectral multiplicities ${2,\ldots,2^n}$ for totally ergodic $\mathbbZ^2$-actions,, Preprint, (). Google Scholar |
[13] |
J. Kwiatkowski jr and M. Lemańczyk, On the multiplicity function of ergodic group extensions. II,, Studia Math., 116 (1995), 207. Google Scholar |
[14] |
A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs,, Erg. Th. & Dyn. Syst., 7 (1987), 531. Google Scholar |
[15] |
M. Lemańczyk, Spectral theory of dynamical systems,, in, (2009), 8554. Google Scholar |
[16] |
M. Lemańczyk and F. Parreau, Special flows over irrational rotations with the simple convolutions property,, preprint., (). Google Scholar |
[17] |
G. Mackey, Induced representations of locally compact groups. I,, Ann. Math. 55 (1952), 55 (1952), 101. Google Scholar |
[18] |
V. V. Ryzhikov, Transformations having homogeneous spectra,, J. Dynam. Control Systems, 5 (1999), 145. Google Scholar |
[19] |
V. V. Ryzhikov, Spectral multiplicities and asymptotic operator properties of actions with an invariant measure,, Mat. Sb., 200 (2009), 107. Google Scholar |
[20] |
R. Zimmer, Induced and amenable ergodic actions of Lie groups,, Ann. Sci. Ecole Norm. Sup., 11 (1978), 407. Google Scholar |
show all references
References:
[1] |
O. N. Ageev, On ergodic transformations with homogeneous spectrum,, J. Dynam. Control Systems 5 (1999), 5 (1999), 149. Google Scholar |
[2] |
A. I. Danilenko, $(C,F)$-actions in ergodic theory,, Progr. Math. 265 (2008), 265 (2008), 325. Google Scholar |
[3] |
A. I. Danilenko, Explicit solution of Rokhlin's problem on homogeneous spectrum and applications,, Ergod. Th. & Dyn. Syst. 26 (2006), 26 (2006), 1467. Google Scholar |
[4] |
A. I. Danilenko, On new spectral multiplicities for ergodic maps,, Studia Math. 197 (2010), 197 (2010), 57. Google Scholar |
[5] |
A. I. Danilenko and S. V. Solomko, Ergodic Abelian actions with homogeneous spectrum,, Contemp. Math. 532 (2010), 532 (2010), 137. Google Scholar |
[6] |
I. Filipowicz, Product $Z^d$-actions on a Lebesgue space and their applications,, Studia Math. 122 (1997), 122 (1997), 289. Google Scholar |
[7] |
K. Frączek, Cyclic space isomorphism of unitary operators,, Studia Math. 124 (1997), 124 (1997), 259. Google Scholar |
[8] |
G. R. Goodson, A survey of recent results in the spectral theory of ergodic dynamical systems,, J. Dynam. Control Systems 5 (1999), 5 (1999), 173. Google Scholar |
[9] |
E. Hewitt and K. A. Ross, "Abstract Harmonic Analysis'',, Vol. I, (1963). Google Scholar |
[10] |
A. Katok and M. Lemańczyk, Some new cases of realization of spectral multiplicity function for ergodic transformations,, Fund. Math. 206 (2009), 206 (2009), 185. Google Scholar |
[11] |
A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory,, in, (2006), 649. Google Scholar |
[12] |
R. A. Konev and V. V. Ryzhikov, On spectral multiplicities ${2,\ldots,2^n}$ for totally ergodic $\mathbbZ^2$-actions,, Preprint, (). Google Scholar |
[13] |
J. Kwiatkowski jr and M. Lemańczyk, On the multiplicity function of ergodic group extensions. II,, Studia Math., 116 (1995), 207. Google Scholar |
[14] |
A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs,, Erg. Th. & Dyn. Syst., 7 (1987), 531. Google Scholar |
[15] |
M. Lemańczyk, Spectral theory of dynamical systems,, in, (2009), 8554. Google Scholar |
[16] |
M. Lemańczyk and F. Parreau, Special flows over irrational rotations with the simple convolutions property,, preprint., (). Google Scholar |
[17] |
G. Mackey, Induced representations of locally compact groups. I,, Ann. Math. 55 (1952), 55 (1952), 101. Google Scholar |
[18] |
V. V. Ryzhikov, Transformations having homogeneous spectra,, J. Dynam. Control Systems, 5 (1999), 145. Google Scholar |
[19] |
V. V. Ryzhikov, Spectral multiplicities and asymptotic operator properties of actions with an invariant measure,, Mat. Sb., 200 (2009), 107. Google Scholar |
[20] |
R. Zimmer, Induced and amenable ergodic actions of Lie groups,, Ann. Sci. Ecole Norm. Sup., 11 (1978), 407. Google Scholar |
[1] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[2] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[3] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[4] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[5] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021004 |
[6] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[7] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[8] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[9] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021005 |
[10] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[11] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[12] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[13] |
Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166 |
[14] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[15] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[16] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[17] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[18] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[19] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]