September  2013, 33(9): 4291-4303. doi: 10.3934/dcds.2013.33.4291

Archimedean ice

1. 

Department of Mathematics, Aalto University, P. O. Box 11100, FI-00076 Aalto, Finland

Received  November 2010 Revised  December 2010 Published  March 2013

The striking boundary dependency, the Arctic Circle Phenomenon, exhibited in the Ice model on the square lattice extends to other planar set-ups. This can be shown using a dynamical formulation which we present for the Archimedean lattices. Critical connectivity results guarantee that the Ice configurations can be generated using the simplest and most efficient local actions. Height functions are utilized throughout the analysis. On a hexagon with suitable boundary height the cellular automaton dynamics generates highly nontrivial Ice equilibria in the triangular and Kagomé cases. On the remaining Archimedean lattice for which the Ice model can be defined, the 3.4.6.4. lattice, the long range behavior is shown to be completely different due to strictly positive entropy for all boundary conditions.
Citation: Kari Eloranta. Archimedean ice. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 4291-4303. doi: 10.3934/dcds.2013.33.4291
References:
[1]

R. J. Baxter, "Exactly Solvable Models In Statistical Mechanics," Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1982.  Google Scholar

[2]

F. Colomo and A. G. Pronko, The arctic circle revisited, in "Integrable Systems and Random Matrices," Contemp. Math., 458, Amer. Math. Soc., Providence, RI, (2008), 361-376. doi: 10.1090/conm/458/08947.  Google Scholar

[3]

J. H. Conway and J. C. Lagarias, Tilings with polyominoes and combinatorial group theory, J. Combin. Theory, Ser. A 53 (1990), 183-208. doi: 10.1016/0097-3165(90)90057-4.  Google Scholar

[4]

K. Eloranta, Diamond ice, J. Stat. Phys. 96 (1999), 1091-1109. doi: 10.1023/A:1004644418182.  Google Scholar

[5]

B. Grünbaum and G. C. Shephard, "Tilings And Patterns," W. H. Freeman and Company, New York, 1987.  Google Scholar

[6]

W. Jockush, J. Propp and P. Shor, "Random domino tilings and the arctic circle Theorem,", arXiv:math.CO/9801068., ().   Google Scholar

[7]

P. Kasteleyn, The statistics of the dimer on a lattice, I. The number of dimer arrangements on a quadratic lattice, Physica 27 (1961), 1209-1225. Google Scholar

[8]

R. Kenyon, An introduction to the dimer model, in "School and Conference on Probability Theory," ICTP Lect. Notes, XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, (2004), 267-304 (electronic).  Google Scholar

[9]

E. Lieb, Residual entropy of square ice, Phys. Rev. 162 (1967), 162-172. Google Scholar

[10]

J. Propp, "Lattice structure for orientation of graphs,", arXiv:math.CO/0209005., ().   Google Scholar

[11]

W. P. Thurston, Conway's tiling groups, Am. Math. Monthly (1990) 757-773. doi: 10.2307/2324578.  Google Scholar

[12]

P. Walters, "An Introduction To Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

show all references

References:
[1]

R. J. Baxter, "Exactly Solvable Models In Statistical Mechanics," Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1982.  Google Scholar

[2]

F. Colomo and A. G. Pronko, The arctic circle revisited, in "Integrable Systems and Random Matrices," Contemp. Math., 458, Amer. Math. Soc., Providence, RI, (2008), 361-376. doi: 10.1090/conm/458/08947.  Google Scholar

[3]

J. H. Conway and J. C. Lagarias, Tilings with polyominoes and combinatorial group theory, J. Combin. Theory, Ser. A 53 (1990), 183-208. doi: 10.1016/0097-3165(90)90057-4.  Google Scholar

[4]

K. Eloranta, Diamond ice, J. Stat. Phys. 96 (1999), 1091-1109. doi: 10.1023/A:1004644418182.  Google Scholar

[5]

B. Grünbaum and G. C. Shephard, "Tilings And Patterns," W. H. Freeman and Company, New York, 1987.  Google Scholar

[6]

W. Jockush, J. Propp and P. Shor, "Random domino tilings and the arctic circle Theorem,", arXiv:math.CO/9801068., ().   Google Scholar

[7]

P. Kasteleyn, The statistics of the dimer on a lattice, I. The number of dimer arrangements on a quadratic lattice, Physica 27 (1961), 1209-1225. Google Scholar

[8]

R. Kenyon, An introduction to the dimer model, in "School and Conference on Probability Theory," ICTP Lect. Notes, XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, (2004), 267-304 (electronic).  Google Scholar

[9]

E. Lieb, Residual entropy of square ice, Phys. Rev. 162 (1967), 162-172. Google Scholar

[10]

J. Propp, "Lattice structure for orientation of graphs,", arXiv:math.CO/0209005., ().   Google Scholar

[11]

W. P. Thurston, Conway's tiling groups, Am. Math. Monthly (1990) 757-773. doi: 10.2307/2324578.  Google Scholar

[12]

P. Walters, "An Introduction To Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[1]

Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524

[2]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[3]

Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021125

[4]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439

[7]

Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965

[8]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[9]

Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[10]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[11]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[12]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[13]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[14]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[15]

Kousuke Kuto, Tohru Tsujikawa. Stationary patterns for an adsorbate-induced phase transition model I: Existence. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1105-1117. doi: 10.3934/dcdsb.2010.14.1105

[16]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4255-4281. doi: 10.3934/dcds.2021035

[17]

Gerald Teschl. On the spatial asymptotics of solutions of the Toda lattice. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1233-1239. doi: 10.3934/dcds.2010.27.1233

[18]

Larry Turyn. Cellular neural networks: asymmetric templates and spatial chaos. Conference Publications, 2003, 2003 (Special) : 864-871. doi: 10.3934/proc.2003.2003.864

[19]

Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang. Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 559-575. doi: 10.3934/dcdsb.2010.13.559

[20]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]