September  2013, 33(9): 4323-4339. doi: 10.3934/dcds.2013.33.4323

Some advances on generic properties of the Oseledets splitting

1. 

Universidad de la Republica, Uruguay

Received  November 2010 Published  March 2013

In his foundational paper [20] , Mañé suggested that some aspects of the Oseledets splitting could be improved if one worked under $C^1$-generic conditions. He announced some powerful theorems, and suggested some lines to follow. Here we survey the state of the art and some recent advances in these directions.
Citation: Jana Rodriguez Hertz. Some advances on generic properties of the Oseledets splitting. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 4323-4339. doi: 10.3934/dcds.2013.33.4323
References:
[1]

F. Abdenur, C. Bonatti and S. Crovisier, Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms, Israel J. Math., 183 (2011), 1-60. doi: 10.1007/s11856-011-0041-5.  Google Scholar

[2]

M.-C. Arnaud, C. Bonatti and S. Crovisier, Dynamiques symplectiques génériques, Ergod. Theory Dynam. Sys., 25 (2005), 1401-1436. doi: 10.1017/S0143385704000975.  Google Scholar

[3]

A. Ávila, On the regularization of conservative maps, Acta Mathematica, 205 (2010), 5-18. doi: 10.1007/s11511-010-0050-y.  Google Scholar

[4]

A. Ávila and J. Bochi, A generic $C^1$ map has no absolutely continuous invariant probability measure, Nonlinearity, 19 (2006), 2717-2725. doi: 10.1088/0951-7715/19/11/011.  Google Scholar

[5]

A. Ávila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Transactions of that AMS, 364 (2012), 2883-2907. doi: 10.1090/S0002-9947-2012-05423-7.  Google Scholar

[6]

A. Ávila, J. Bochi and A. Wilkinson, Nonuniform center bunching, and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms, Ann. Scien. Ec. Norm. Sup. (4), 42 (2009), 931-979.  Google Scholar

[7]

A. Avila, S. Crovisier and A. Wilkinson, The general case,, announcement., ().   Google Scholar

[8]

A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergod. Th. & Dynam. Sys., 23 (2003), 1655-1670. doi: 10.1017/S0143385702001773.  Google Scholar

[9]

J. Bochi, Genericity of zero Lyapunov exponents, Erg. Th. & Dyn. Sys., 22 (2002), 1667-1696. doi: 10.1017/S0143385702001165.  Google Scholar

[10]

J. Bochi, $C^1$-generic symplectic diffeomorphisms: Partial hyperbolicity and zero centre Lyapunov exponents, Journal of the Inst. Math. Jussieu, 9 (2010), 49-93. doi: 10.1017/S1474748009000061.  Google Scholar

[11]

J. Bochi and M. Viana, Lyapunov exponents: How frequently are dynamical systems hyperbolic? in "Modern Dynamical Systems and Applications" (ed. M. Brin, B. Hasselblatt and Y. Pesin), Cambridge University Press, Cambridge, (2004), 271-297.  Google Scholar

[12]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Ann. Math. (2), 161 (2005), 1423-1485. doi: 10.4007/annals.2005.161.1423.  Google Scholar

[13]

C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math., 158 (2004), 33-104. doi: 10.1007/s00222-004-0368-1.  Google Scholar

[14]

C. Bonatti, C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity, Comment. Math. Helv., 79 (2004), 753-757. doi: 10.1007/s00014-004-0819-8.  Google Scholar

[15]

C. Bonatti and M. Viana, SRB-measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193. doi: 10.1007/BF02810585.  Google Scholar

[16]

M. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Funkcional. Anal. i Priložen., 9 (1975), 9-19.  Google Scholar

[17]

D. Dolgopyat and A. Wilkinson, Stable accessibility is $C^1$ dense, Astérisque, 287 (2003), 33-60.  Google Scholar

[18]

E. Grin, Genericity of diffeomorphisms with vanishing Lyapunov exponents almost everywhere,, preprint., ().   Google Scholar

[19]

R. Mañé, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540. doi: 10.2307/2007021.  Google Scholar

[20]

R. Mañé, Oseledec's theorem from the generic viewpoint, in "Proc. Internat. Congress of Mathematicians, Vol. 1, 2" (Warsaw, 1983), PWN, Warsaw, 1984.  Google Scholar

[21]

R. Mañé, "Ergodic Theory and Differentiable Dynamics," Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8, Springer-Verlag, Berlin, 1987.  Google Scholar

[22]

R. Mañé, The Lyapunov exponents of generic area preserving diffeomorphisms, in "Intl. Conference on Dynamical Systems" (ed. F. Ledrappier, J. Lewowicz and S. Newhouse) (Montevideo, 1995), Pitman Research Notes Math. Ser., 362, Longman, Harlow, (1996), 110-119.  Google Scholar

[23]

V. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. Google Scholar

[24]

J. Oxtoby and S. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2), 142 (1941), 874-920.  Google Scholar

[25]

C. Pugh and M. Shub, Stable ergodicity and partial hyperbolicity, in "Intl. Conference on Dynamical Systems" (ed. F. Ledrappier, J. Lewowicz, S. Newhouse) (Montevideo, 1995), Pitman Research Notes Math. Ser., 362, Longman, Harlow, (1996), 182-187.  Google Scholar

[26]

C. Pugh and M. Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc., 2 (2000), 1-52. doi: 10.1007/s100970050013.  Google Scholar

[27]

J. Rodriguez Hertz, Genericity of non-uniform hyperbolicity in dimension 3, J. Modern Dyn., 6 (2012), 121-138. doi: 10.3934/jmd.2012.6.121.  Google Scholar

[28]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381. doi: 10.1007/s00222-007-0100-z.  Google Scholar

[29]

F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and non-uniform hyperbolicity,, submitted, ().   Google Scholar

[30]

F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi and R. Ures, Creation of blenders in the conservative setting, Nonlinearity, 23 (2010), 211-223. doi: 10.1088/0951-7715/23/2/001.  Google Scholar

[31]

R. Saghin and Z. Xia, Partial hyperbolicity or dense elliptic periodic points for $C^1$-generic symplectic diffeomorphisms, Trans. Amer. Math. Soc., 358 (2006), 5119-5138. doi: 10.1090/S0002-9947-06-04171-7.  Google Scholar

[32]

K. Sigmund, Generic properties of invarient measures for Axiom A diffeomorphisms, Invent. Math., 11 (1970), 99-109.  Google Scholar

[33]

A. Tahzibi, Stably ergodic diffeomorphisms which are not partially hyperbolic, Israel J. Math., 142 (2004), 315-344. doi: 10.1007/BF02771539.  Google Scholar

[34]

E. Zehnder, Note on smoothing symplectic and volume preserving diffeomorphisms, in "Geometry and Topology" (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lect. Notes in Math., 597, Springer, Berlin, (1977), 828-854.  Google Scholar

show all references

References:
[1]

F. Abdenur, C. Bonatti and S. Crovisier, Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms, Israel J. Math., 183 (2011), 1-60. doi: 10.1007/s11856-011-0041-5.  Google Scholar

[2]

M.-C. Arnaud, C. Bonatti and S. Crovisier, Dynamiques symplectiques génériques, Ergod. Theory Dynam. Sys., 25 (2005), 1401-1436. doi: 10.1017/S0143385704000975.  Google Scholar

[3]

A. Ávila, On the regularization of conservative maps, Acta Mathematica, 205 (2010), 5-18. doi: 10.1007/s11511-010-0050-y.  Google Scholar

[4]

A. Ávila and J. Bochi, A generic $C^1$ map has no absolutely continuous invariant probability measure, Nonlinearity, 19 (2006), 2717-2725. doi: 10.1088/0951-7715/19/11/011.  Google Scholar

[5]

A. Ávila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Transactions of that AMS, 364 (2012), 2883-2907. doi: 10.1090/S0002-9947-2012-05423-7.  Google Scholar

[6]

A. Ávila, J. Bochi and A. Wilkinson, Nonuniform center bunching, and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms, Ann. Scien. Ec. Norm. Sup. (4), 42 (2009), 931-979.  Google Scholar

[7]

A. Avila, S. Crovisier and A. Wilkinson, The general case,, announcement., ().   Google Scholar

[8]

A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergod. Th. & Dynam. Sys., 23 (2003), 1655-1670. doi: 10.1017/S0143385702001773.  Google Scholar

[9]

J. Bochi, Genericity of zero Lyapunov exponents, Erg. Th. & Dyn. Sys., 22 (2002), 1667-1696. doi: 10.1017/S0143385702001165.  Google Scholar

[10]

J. Bochi, $C^1$-generic symplectic diffeomorphisms: Partial hyperbolicity and zero centre Lyapunov exponents, Journal of the Inst. Math. Jussieu, 9 (2010), 49-93. doi: 10.1017/S1474748009000061.  Google Scholar

[11]

J. Bochi and M. Viana, Lyapunov exponents: How frequently are dynamical systems hyperbolic? in "Modern Dynamical Systems and Applications" (ed. M. Brin, B. Hasselblatt and Y. Pesin), Cambridge University Press, Cambridge, (2004), 271-297.  Google Scholar

[12]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Ann. Math. (2), 161 (2005), 1423-1485. doi: 10.4007/annals.2005.161.1423.  Google Scholar

[13]

C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math., 158 (2004), 33-104. doi: 10.1007/s00222-004-0368-1.  Google Scholar

[14]

C. Bonatti, C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity, Comment. Math. Helv., 79 (2004), 753-757. doi: 10.1007/s00014-004-0819-8.  Google Scholar

[15]

C. Bonatti and M. Viana, SRB-measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193. doi: 10.1007/BF02810585.  Google Scholar

[16]

M. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Funkcional. Anal. i Priložen., 9 (1975), 9-19.  Google Scholar

[17]

D. Dolgopyat and A. Wilkinson, Stable accessibility is $C^1$ dense, Astérisque, 287 (2003), 33-60.  Google Scholar

[18]

E. Grin, Genericity of diffeomorphisms with vanishing Lyapunov exponents almost everywhere,, preprint., ().   Google Scholar

[19]

R. Mañé, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540. doi: 10.2307/2007021.  Google Scholar

[20]

R. Mañé, Oseledec's theorem from the generic viewpoint, in "Proc. Internat. Congress of Mathematicians, Vol. 1, 2" (Warsaw, 1983), PWN, Warsaw, 1984.  Google Scholar

[21]

R. Mañé, "Ergodic Theory and Differentiable Dynamics," Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8, Springer-Verlag, Berlin, 1987.  Google Scholar

[22]

R. Mañé, The Lyapunov exponents of generic area preserving diffeomorphisms, in "Intl. Conference on Dynamical Systems" (ed. F. Ledrappier, J. Lewowicz and S. Newhouse) (Montevideo, 1995), Pitman Research Notes Math. Ser., 362, Longman, Harlow, (1996), 110-119.  Google Scholar

[23]

V. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. Google Scholar

[24]

J. Oxtoby and S. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2), 142 (1941), 874-920.  Google Scholar

[25]

C. Pugh and M. Shub, Stable ergodicity and partial hyperbolicity, in "Intl. Conference on Dynamical Systems" (ed. F. Ledrappier, J. Lewowicz, S. Newhouse) (Montevideo, 1995), Pitman Research Notes Math. Ser., 362, Longman, Harlow, (1996), 182-187.  Google Scholar

[26]

C. Pugh and M. Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc., 2 (2000), 1-52. doi: 10.1007/s100970050013.  Google Scholar

[27]

J. Rodriguez Hertz, Genericity of non-uniform hyperbolicity in dimension 3, J. Modern Dyn., 6 (2012), 121-138. doi: 10.3934/jmd.2012.6.121.  Google Scholar

[28]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381. doi: 10.1007/s00222-007-0100-z.  Google Scholar

[29]

F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and non-uniform hyperbolicity,, submitted, ().   Google Scholar

[30]

F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi and R. Ures, Creation of blenders in the conservative setting, Nonlinearity, 23 (2010), 211-223. doi: 10.1088/0951-7715/23/2/001.  Google Scholar

[31]

R. Saghin and Z. Xia, Partial hyperbolicity or dense elliptic periodic points for $C^1$-generic symplectic diffeomorphisms, Trans. Amer. Math. Soc., 358 (2006), 5119-5138. doi: 10.1090/S0002-9947-06-04171-7.  Google Scholar

[32]

K. Sigmund, Generic properties of invarient measures for Axiom A diffeomorphisms, Invent. Math., 11 (1970), 99-109.  Google Scholar

[33]

A. Tahzibi, Stably ergodic diffeomorphisms which are not partially hyperbolic, Israel J. Math., 142 (2004), 315-344. doi: 10.1007/BF02771539.  Google Scholar

[34]

E. Zehnder, Note on smoothing symplectic and volume preserving diffeomorphisms, in "Geometry and Topology" (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lect. Notes in Math., 597, Springer, Berlin, (1977), 828-854.  Google Scholar

[1]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[2]

Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014

[3]

Pablo G. Barrientos, Abbas Fakhari. Ergodicity of non-autonomous discrete systems with non-uniform expansion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1361-1382. doi: 10.3934/dcdsb.2019231

[4]

Markus Bachmayr, Van Kien Nguyen. Identifiability of diffusion coefficients for source terms of non-uniform sign. Inverse Problems & Imaging, 2019, 13 (5) : 1007-1021. doi: 10.3934/ipi.2019045

[5]

Zhong-Jie Han, Gen-Qi Xu. Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks & Heterogeneous Media, 2010, 5 (2) : 315-334. doi: 10.3934/nhm.2010.5.315

[6]

Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819

[7]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[8]

Zhong-Jie Han, Gen-Qi Xu. Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 57-77. doi: 10.3934/dcdsb.2012.17.57

[9]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[10]

Hai Huyen Dam, Wing-Kuen Ling. Optimal design of finite precision and infinite precision non-uniform cosine modulated filter bank. Journal of Industrial & Management Optimization, 2019, 15 (1) : 97-112. doi: 10.3934/jimo.2018034

[11]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[12]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

[13]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[14]

Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587

[15]

Victor Churchill, Rick Archibald, Anne Gelb. Edge-adaptive $ \ell_2 $ regularization image reconstruction from non-uniform Fourier data. Inverse Problems & Imaging, 2019, 13 (5) : 931-958. doi: 10.3934/ipi.2019042

[16]

David Damanik, Jake Fillman, Milivoje Lukic, William Yessen. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1009-1023. doi: 10.3934/dcdss.2016039

[17]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[18]

Dawei Yang, Shaobo Gan, Lan Wen. Minimal non-hyperbolicity and index-completeness. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1349-1366. doi: 10.3934/dcds.2009.25.1349

[19]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[20]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]