October  2013, 33(10): 4411-4433. doi: 10.3934/dcds.2013.33.4411

Construction of response functions in forced strongly dissipative systems

1. 

Institute for Mathematics and its Applications, University of Minnesota, 307 Church St SE, Minneapolis, MN 55455, United States

2. 

Department of Mathematics, University of Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy

3. 

School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta, GA 30332-0160, United States

Received  July 2012 Revised  December 2012 Published  April 2013

We study the existence of quasi--periodic solutions of the equation \[ ε \ddot x + \dot x + ε g(x) = ε f(\omega t)\ , \] where $x: \mathbb{R} \rightarrow \mathbb{R}$ is the unknown and we are given $g:\mathbb{R} \rightarrow \mathbb{R}$, $f: \mathbb{T}^d \rightarrow \mathbb{R}$, $\omega \in \mathbb{R}^d$ (without loss of generality we can assume that $\omega\cdot k\not=0$ for any $k \in \mathbb{Z}^d\backslash\{0\}$). We assume that there is a $c_0\in \mathbb{R}$ such that $g(c_0) = \hat f_0$ (where $\hat f_0$ denotes the average of $f$) and $g'(c_0) \ne 0$. Special cases of this equation, for example when $g(x)=x^2$, are called the ``varactor problem'' in the literature.
    We show that if $f$, $g$ are analytic, and $\omega$ satisfies some very mild irrationality conditions, there are families of quasi--periodic solutions with frequency $\omega$. These families depend analytically on $ε$, when $ε$ ranges over a complex domain that includes cones or parabolic domains based at the origin.
    The irrationality conditions required in this paper are very weak. They allow that the small denominators $|\omega \cdot k|^{-1}$ grow exponentially with $k$. In the case that $f$ is a trigonometric polynomial, we do not need any condition on $|\omega \cdot k|$. This answers a delicate question raised in [8].
    We also consider the periodic case, when $\omega$ is just a number ($d = 1$). We obtain that there are solutions that depend analytically in a domain which is a disk removing countably many disjoint disks. This shows that in this case there is no Stokes phenomenon (different resummations on different sectors) for the asymptotic series.
    The approach we use is to reduce the problem to a fixed point theorem. This approach also yields results in the case that $g$ is a finitely differentiable function; it provides also very effective numerical algorithms and we discuss how they can be implemented.
Citation: Renato C. Calleja, Alessandra Celletti, Rafael de la Llave. Construction of response functions in forced strongly dissipative systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4411-4433. doi: 10.3934/dcds.2013.33.4411
References:
[1]

Jürgen Appell and Petr P. Zabrejko, "Nonlinear Superposition Operators,", 95 of Cambridge Tracts in Mathematics, 95 (1990). doi: 10.1017/CBO9780511897450. Google Scholar

[2]

Roger Broucke and K. Garthwaite, A programming system for analytical series expansions on a computer,, Celestial Mechanics, 1 (1969), 271. doi: 10.1007/BF01228844. Google Scholar

[3]

Renato Calleja, Alessandra Celletti and Rafael de la Llave, A KAM theory for conformally symplectic systems: efficient algorithms and their validation,, MP_ARC # 11-188. Jour. Diff. Equ, (): 11. Google Scholar

[4]

Renato Calleja and Rafael de la Llave, A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification,, Nonlinearity, 23 (2010), 2029. doi: 10.1088/0951-7715/23/9/001. Google Scholar

[5]

Alessandra Celletti and Luigi Chierchia, KAM stability and celestial mechanics,, Mem. Amer. Math. Soc., 187 (2007). Google Scholar

[6]

Corrado Falcolini and Rafael de la Llave, A rigorous partial justification of Greene's criterion,, J. Statist. Phys., 67 (1992), 609. doi: 10.1007/BF01049722. Google Scholar

[7]

Mickaël Gastineau and Jacques Laskar, Development of trip: Fast sparse multivariate polynomial multiplication using burst tries,, Computational Science - ICCS, (2006), 446. Google Scholar

[8]

Guido Gentile, Quasi-periodic motions in strongly dissipative forced systems,, Ergodic Theory Dynam. Systems, 30 (2010), 1457. doi: 10.1017/S0143385709000583. Google Scholar

[9]

Guido Gentile, Quasiperiodic motions in dynamical systems: Review of a renormalization group approach,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3271653. Google Scholar

[10]

Guido Gentile, Construction of quasi-periodic response solutions in forced strongly dissipative systems,, Forum Mathematicum, 24 (2012), 791. doi: 10.1515/form.2011.084. Google Scholar

[11]

Guido Gentile, Michele V. Bartuccelli and Jonathan H. B. Deane, Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms,, J. Math. Phys., 46 (2005). doi: 10.1063/1.1926208. Google Scholar

[12]

Guido Gentile, Michele V. Bartuccelli and Jonathan H. B. Deane, Quasiperiodic attractors, Borel summability and the Bryuno condition for strongly dissipative systems,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2213790. Google Scholar

[13]

Godfrey H. Hardy, "Divergent Series,", Oxford, (1949). Google Scholar

[14]

Alex Haro, Automatic differentiation tools in computational dynamical systems,, Univ. of Barcelona Preprint, (2008). Google Scholar

[15]

Alex Haro and Rafael de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: rigorous results,, J. Differential Equations, 228 (2006), 530. doi: 10.1016/j.jde.2005.10.005. Google Scholar

[16]

Yu. S. Ilyashenko (editor), Nonlinear Stokes phenomena,, Advances in Soviet mathematics, (1993). Google Scholar

[17]

Donald E. Knuth, "The Art of Computer Programming. Vol. 2: Seminumerical Algorithms,", Addison-Wesley Publishing Co., (1997). Google Scholar

[18]

Thomas Runst and Winfried Sickel, "Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,", 3 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., 3 (1996). doi: 10.1515/9783110812411. Google Scholar

[19]

Alan D. Sokal, An improvement of Watson's theorem on Borel summability,, J. Math. Phys., 21 (1980), 261. doi: 10.1063/1.524408. Google Scholar

[20]

Michael E. Taylor, "Partial Differential Equations. III,", 117 of Applied Mathematical Sciences. Springer-Verlag, 117 (1997). Google Scholar

[21]

George N. Watson, A theory of asymptotic series,, Lond. Phil. Trans. (A), 211 (1911), 279. doi: 10.1098/rsta.1912.0007. Google Scholar

show all references

References:
[1]

Jürgen Appell and Petr P. Zabrejko, "Nonlinear Superposition Operators,", 95 of Cambridge Tracts in Mathematics, 95 (1990). doi: 10.1017/CBO9780511897450. Google Scholar

[2]

Roger Broucke and K. Garthwaite, A programming system for analytical series expansions on a computer,, Celestial Mechanics, 1 (1969), 271. doi: 10.1007/BF01228844. Google Scholar

[3]

Renato Calleja, Alessandra Celletti and Rafael de la Llave, A KAM theory for conformally symplectic systems: efficient algorithms and their validation,, MP_ARC # 11-188. Jour. Diff. Equ, (): 11. Google Scholar

[4]

Renato Calleja and Rafael de la Llave, A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification,, Nonlinearity, 23 (2010), 2029. doi: 10.1088/0951-7715/23/9/001. Google Scholar

[5]

Alessandra Celletti and Luigi Chierchia, KAM stability and celestial mechanics,, Mem. Amer. Math. Soc., 187 (2007). Google Scholar

[6]

Corrado Falcolini and Rafael de la Llave, A rigorous partial justification of Greene's criterion,, J. Statist. Phys., 67 (1992), 609. doi: 10.1007/BF01049722. Google Scholar

[7]

Mickaël Gastineau and Jacques Laskar, Development of trip: Fast sparse multivariate polynomial multiplication using burst tries,, Computational Science - ICCS, (2006), 446. Google Scholar

[8]

Guido Gentile, Quasi-periodic motions in strongly dissipative forced systems,, Ergodic Theory Dynam. Systems, 30 (2010), 1457. doi: 10.1017/S0143385709000583. Google Scholar

[9]

Guido Gentile, Quasiperiodic motions in dynamical systems: Review of a renormalization group approach,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3271653. Google Scholar

[10]

Guido Gentile, Construction of quasi-periodic response solutions in forced strongly dissipative systems,, Forum Mathematicum, 24 (2012), 791. doi: 10.1515/form.2011.084. Google Scholar

[11]

Guido Gentile, Michele V. Bartuccelli and Jonathan H. B. Deane, Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms,, J. Math. Phys., 46 (2005). doi: 10.1063/1.1926208. Google Scholar

[12]

Guido Gentile, Michele V. Bartuccelli and Jonathan H. B. Deane, Quasiperiodic attractors, Borel summability and the Bryuno condition for strongly dissipative systems,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2213790. Google Scholar

[13]

Godfrey H. Hardy, "Divergent Series,", Oxford, (1949). Google Scholar

[14]

Alex Haro, Automatic differentiation tools in computational dynamical systems,, Univ. of Barcelona Preprint, (2008). Google Scholar

[15]

Alex Haro and Rafael de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: rigorous results,, J. Differential Equations, 228 (2006), 530. doi: 10.1016/j.jde.2005.10.005. Google Scholar

[16]

Yu. S. Ilyashenko (editor), Nonlinear Stokes phenomena,, Advances in Soviet mathematics, (1993). Google Scholar

[17]

Donald E. Knuth, "The Art of Computer Programming. Vol. 2: Seminumerical Algorithms,", Addison-Wesley Publishing Co., (1997). Google Scholar

[18]

Thomas Runst and Winfried Sickel, "Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,", 3 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., 3 (1996). doi: 10.1515/9783110812411. Google Scholar

[19]

Alan D. Sokal, An improvement of Watson's theorem on Borel summability,, J. Math. Phys., 21 (1980), 261. doi: 10.1063/1.524408. Google Scholar

[20]

Michael E. Taylor, "Partial Differential Equations. III,", 117 of Applied Mathematical Sciences. Springer-Verlag, 117 (1997). Google Scholar

[21]

George N. Watson, A theory of asymptotic series,, Lond. Phil. Trans. (A), 211 (1911), 279. doi: 10.1098/rsta.1912.0007. Google Scholar

[1]

Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151

[2]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[3]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[4]

Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1617-1625. doi: 10.3934/dcdsb.2018222

[5]

Xiaojun Chang, Yong Li. Rotating periodic solutions of second order dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 643-652. doi: 10.3934/dcds.2016.36.643

[6]

Junxiang Xu. On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2593-2619. doi: 10.3934/dcds.2013.33.2593

[7]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[8]

Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517

[9]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[10]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[11]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[12]

Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557

[13]

Ugo Locatelli, Letizia Stefanelli. Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1155-1187. doi: 10.3934/dcdsb.2015.20.1155

[14]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[15]

Tiphaine Jézéquel, Patrick Bernard, Eric Lombardi. Homoclinic orbits with many loops near a $0^2 i\omega$ resonant fixed point of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3153-3225. doi: 10.3934/dcds.2016.36.3153

[16]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[17]

Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576-586. doi: 10.3934/proc.2005.2005.576

[18]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[19]

Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure & Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421

[20]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (6)

[Back to Top]