Citation: |
[1] |
Jürgen Appell and Petr P. Zabrejko, "Nonlinear Superposition Operators," 95 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1990.doi: 10.1017/CBO9780511897450. |
[2] |
Roger Broucke and K. Garthwaite, A programming system for analytical series expansions on a computer, Celestial Mechanics, 1 (1969), 271-284.doi: 10.1007/BF01228844. |
[3] |
Renato Calleja, Alessandra Celletti and Rafael de la Llave, A KAM theory for conformally symplectic systems: efficient algorithms and their validation, MP_ARC # 11-188. Jour. Diff. Equ, to appear. |
[4] |
Renato Calleja and Rafael de la Llave, A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification, Nonlinearity, 23 (2010), 2029-2058.doi: 10.1088/0951-7715/23/9/001. |
[5] |
Alessandra Celletti and Luigi Chierchia, KAM stability and celestial mechanics, Mem. Amer. Math. Soc., 187 (2007), viii+134. |
[6] |
Corrado Falcolini and Rafael de la Llave, A rigorous partial justification of Greene's criterion, J. Statist. Phys., 67 (1992), 609-643.doi: 10.1007/BF01049722. |
[7] |
Mickaël Gastineau and Jacques Laskar, Development of trip: Fast sparse multivariate polynomial multiplication using burst tries, Computational Science - ICCS, Lecture Notes in Computer Science,(2006), 446-453. |
[8] |
Guido Gentile, Quasi-periodic motions in strongly dissipative forced systems, Ergodic Theory Dynam. Systems, 30 (2010), 1457-1469.doi: 10.1017/S0143385709000583. |
[9] |
Guido Gentile, Quasiperiodic motions in dynamical systems: Review of a renormalization group approach, J. Math. Phys., 51 (2010) pp. 34, 015207.doi: 10.1063/1.3271653. |
[10] |
Guido Gentile, Construction of quasi-periodic response solutions in forced strongly dissipative systems, Forum Mathematicum, 24 (2012), 791-808.doi: 10.1515/form.2011.084. |
[11] |
Guido Gentile, Michele V. Bartuccelli and Jonathan H. B. Deane, Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms, J. Math. Phys., 46 (2005) pp.20, 062704.doi: 10.1063/1.1926208. |
[12] |
Guido Gentile, Michele V. Bartuccelli and Jonathan H. B. Deane, Quasiperiodic attractors, Borel summability and the Bryuno condition for strongly dissipative systems, J. Math. Phys., 47 (2006) pp.10, 072702.doi: 10.1063/1.2213790. |
[13] |
Godfrey H. Hardy, "Divergent Series," Oxford, at the Clarendon Press, 1949. |
[14] |
Alex Haro, Automatic differentiation tools in computational dynamical systems, Univ. of Barcelona Preprint, (2008). |
[15] |
Alex Haro and Rafael de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: rigorous results, J. Differential Equations, 228 (2006), 530-579.doi: 10.1016/j.jde.2005.10.005. |
[16] |
Yu. S. Ilyashenko (editor), Nonlinear Stokes phenomena, Advances in Soviet mathematics, Am. Math. Soc., (1993). |
[17] |
Donald E. Knuth, "The Art of Computer Programming. Vol. 2: Seminumerical Algorithms," Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, third revised edition, 1997. |
[18] |
Thomas Runst and Winfried Sickel, "Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations," 3 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 1996.doi: 10.1515/9783110812411. |
[19] |
Alan D. Sokal, An improvement of Watson's theorem on Borel summability, J. Math. Phys., 21 (1980), 261-263.doi: 10.1063/1.524408. |
[20] |
Michael E. Taylor, "Partial Differential Equations. III," 117 of Applied Mathematical Sciences. Springer-Verlag, New York, 1997. |
[21] |
George N. Watson, A theory of asymptotic series, Lond. Phil. Trans. (A), 211 (1911), 279-313.doi: 10.1098/rsta.1912.0007. |