October  2013, 33(10): 4435-4471. doi: 10.3934/dcds.2013.33.4435

About the unfolding of a Hopf-zero singularity

1. 

Hasselt University, Campus Diepenbeek, Agoralaan gebouw D, B-3590 Diepenbeek

2. 

Departamento de Matemáticas, Universidad de Oviedo, Avda. Calvo Sotelo s/n, 33007 Oviedo, Spain

3. 

Department of Mathematics/JST-CREST, Kyoto University, Kyoto 606-8502, Japan

4. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via, 585, 08071 Barcelona, Spain

Received  September 2012 Revised  January 2013 Published  April 2013

We study arbitrary generic unfoldings of a Hopf-zero singularity of codimension two. They can be written in the following normal form: \begin{eqnarray*} \left\{ \begin{array}{l} x'=-y+\mu x-axz+A(x,y,z,\lambda,\mu) \\ y'=x+\mu y-ayz+B(x,y,z,\lambda,\mu) \\ z'=z^2+\lambda+b(x^2+y^2)+C(x,y,z,\lambda,\mu), \end{array} \right. \end{eqnarray*} with $a>0$, $b>0$ and where $A$, $B$, $C$ are $C^\infty$ or $C^\omega$ functions of order $O(\|(x,y,z,\lambda,\mu)\|^3)$.
    Despite that the existence of Shilnikov homoclinic orbits in unfoldings of Hopf-zero singularities has been discussed previously in the literature, no result valid for arbitrary generic unfoldings is available. In this paper we present new techniques to study global bifurcations from Hopf-zero singularities. They allow us to obtain a general criterion for the existence of Shilnikov homoclinic bifurcations and also provide a detailed description of the bifurcation set. Criteria for the existence of Bykov cycles are also provided. Main tools are a blow-up method, including a related invariant theory, and a novel approach to the splitting functions of the invariant manifolds. Theoretical results are applied to the Michelson system and also to the so called extended Michelson system. Paper includes thorough numerical explorations of dynamics for both systems.
Citation: Freddy Dumortier, Santiago Ibáñez, Hiroshi Kokubu, Carles Simó. About the unfolding of a Hopf-zero singularity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4435-4471. doi: 10.3934/dcds.2013.33.4435
References:
[1]

K. L. Adams, J. R. King and R. H. Tew, Beyond-all-orders effects in multiple-scales asymptotics: Travelling-wave solutions to the Kuramoto-Sivashinsky equation,, J. Engrg. Math., 45 (2003), 197. doi: 10.1023/A:1022600411856. Google Scholar

[2]

I. Baldomá, O. Castejón and T. M. Seara, Exponentially small heteroclinic breakdown in the generic Hopf-Zero singularity,, Journal of Dynamics and Differential Equations (to appear)., (). Google Scholar

[3]

P. Bonckaert and E. Fontich, Invariant manifolds of maps close to a product of rotations: Close to the rotation axis,, J. Differential Equations, 191 (2003), 490. Google Scholar

[4]

P. Bonckaert and E. Fontich, Invariant manifolds of dynamical systems close to a rotation: Transverse to the rotation axis,, J. Differential Equations, 214 (2005), 128. doi: 10.1016/j.jde.2005.02.012. Google Scholar

[5]

H. W. Broer and G. Vegter, Subordinate Sil'nikov bifurcations near some singularities of vector fields having low codimension,, Ergodic Theory Dynam. Systems, 4 (1984), 509. doi: 10.1017/S0143385700002613. Google Scholar

[6]

H. W. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing,, Nonlinearity, 15 (2002), 1205. doi: 10.1088/0951-7715/15/4/312. Google Scholar

[7]

H. W. Broer, C. Simó and R. Vitolo, Quasi-periodic Hénon-like attractors in the Lorenz-84 climate model with seasonal forcing,, in, (2005), 601. doi: 10.1142/9789812702067_0100. Google Scholar

[8]

H. W. Broer, C. Simó and R. Vitolo, Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance bubble,, Phys. D, 237 (2008), 1773. doi: 10.1016/j.physd.2008.01.026. Google Scholar

[9]

H. W. Broer, C. Simó and R. Vitolo, The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol'd resonance web,, Bull. Belgian Math. Soc. Simon Stevin, 15 (2008), 769. Google Scholar

[10]

H. W. Broer, C. Simó and R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871. doi: 10.3934/dcdsb.2010.14.871. Google Scholar

[11]

A. R. Champneys and V. Kirk, The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities,, Phys. D, 195 (2004), 77. doi: 10.1016/j.physd.2004.03.004. Google Scholar

[12]

F. Dumortier and S. Ibáñez, Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields,, J. Differential Equations, 127 (1996), 590. doi: 10.1006/jdeq.1996.0085. Google Scholar

[13]

F. Dumortier and S. Ibáñez, Singularities of vector fields on $\mathbbR^3$,, Nonlinearity, 11 (1998), 1037. doi: 10.1088/0951-7715/11/4/015. Google Scholar

[14]

F. Dumortier, S. Ibáñez and H. Kokubu, New aspects in the unfolding of the nilpotent singularity of codimension three,, Dyn. Syst., 16 (2001), 63. doi: 10.1080/02681110010017417. Google Scholar

[15]

F. Dumortier, S. Ibáñez and H. Kokubu, Cocoon bifurcations in three-dimensional reversible vector fields,, Nonlinearity, 19 (2006), 305. doi: 10.1088/0951-7715/19/2/004. Google Scholar

[16]

E. Fontich and C. Simó, The splitting of sepratrices for analytic diffeomorphisms,, Ergodic Theory Dynam. Systems, 10 (1990), 295. doi: 10.1017/S0143385700005563. Google Scholar

[17]

E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices,, Ergodic Theory Dynam. Systems, 10 (1990), 319. doi: 10.1017/S0143385700005575. Google Scholar

[18]

P. Gaspard, Local birth of homoclinic chaos,, Phys. D, 62 (1993), 94. doi: 10.1016/0167-2789(93)90276-7. Google Scholar

[19]

N. K. Gavrilov, On some bifurcations of equilibria with a zero and a pair of purely imaginary roots, (1978),, in, (1987), 43. Google Scholar

[20]

P. Glendinning and C. Sparrow, Local and global behavior near homoclinic orbits,, J. Statist. Phys., 35 (1984), 645. doi: 10.1007/BF01010828. Google Scholar

[21]

J. Guckenheimer, On a codimension two bifurcation,, in, 898 (1981). Google Scholar

[22]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields,", $3^{rd}$ edition, (1990). Google Scholar

[23]

A. J. Homburg, Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria,, Nonlinearity, 15 (2002), 1029. doi: 10.1088/0951-7715/15/4/304. Google Scholar

[24]

S. Ibáñez and J. A. Rodríguez, Shil'nikov configurations in any generic unfolding of the nilpotent singularity of codimension three on $\mathbbR^3$,, J. Differential Equations, 208 (2005), 147. doi: 10.1016/j.jde.2003.08.006. Google Scholar

[25]

N. Ishimura, Remarks on third-order ODEs relevant to the Kuramoto-Sivashinsky equation,, J. Differential Equations, 178 (2002), 466. doi: 10.1006/jdeq.2001.4018. Google Scholar

[26]

J. Jones, W. C. Troy and A. D. McGillivary, Steady solutions of the Kuramoto-Sivashinsky equation for small wave speed,, J. Differential Equations, 96 (1992), 28. doi: 10.1016/0022-0396(92)90143-B. Google Scholar

[27]

P. Kent and J. Elgin, A Shil'nikov-type analysis in a system with symmetry,, Phys. Lett. A, 152 (1991), 28. doi: 10.1016/0375-9601(91)90623-G. Google Scholar

[28]

P. Kent and J. Elgin, Noose bifurcation of periodic orbits,, Nonlinearity, 4 (1991), 1045. doi: 10.1088/0951-7715/4/4/002. Google Scholar

[29]

P. Kent and J. Elgin, Travelling-waves of the Kuramoto-Sivashinsky equation: Period multiplyng bifurcations,, Nonlinearity, 5 (1992), 899. doi: 10.1088/0951-7715/5/4/004. Google Scholar

[30]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium,, Prog. Theor. Phys., 55 (1976), 356. doi: 10.1143/PTP.55.356. Google Scholar

[31]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory,", $3^{rd}$ edition, (2004). Google Scholar

[32]

J. S. W. Lamb, M.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $\mathbbR^3$,, J. Differential Equations, 219 (2005), 78. doi: 10.1016/j.jde.2005.02.019. Google Scholar

[33]

Y.-T. Lau, The "cocoon" bifurcations in three-dimensional systems with two fixed points,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2 (1992), 543. doi: 10.1142/S0218127492000690. Google Scholar

[34]

F. Ledrappier, M. Shub, C. Simó and A. Wilkinson, Random versus deterministic exponents in a rich family of diffeomorphisms,, J. Statist. Phys., 113 (2003), 85. doi: 10.1023/A:1025770720803. Google Scholar

[35]

C. K. McCord, Uniqueness of connecting orbits in the equation $Y^{(3)}=Y^2-1$,, J. Math. Anal. Appl., 114 (1986), 584. doi: 10.1016/0022-247X(86)90110-1. Google Scholar

[36]

D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation,, Phys. D, 19 (1986), 89. doi: 10.1016/0167-2789(86)90055-2. Google Scholar

[37]

J. Puig and C. Simó, Resonance tongues in the quasi-periodic Hill-Schrödinger equation with three frequencies,, Regul. Chaotic Dyn., 16 (2011), 61. doi: 10.1134/S1560354710520047. Google Scholar

[38]

S. V. Raghavan, J. B. McLeod and W. C. Troy, A singular perturbation problem arising from the Kuramoto-Sivashinsky equation,, Differential Integral Equations, 10 (1997), 1. Google Scholar

[39]

C. Simó, On the Hénon-Pomeau attractor,, J. Statist. Phys., 21 (1979), 465. doi: 10.1007/BF01009612. Google Scholar

[40]

C. Simó, Global dynamics and fast indicators,, in, (2001), 373. Google Scholar

[41]

C. Simó, Some properties of the global behaviour of conservative low-dimensional systems,, in, 363 (2009), 163. Google Scholar

[42]

C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps,, Nonlinearity, 22 (2009), 1191. doi: 10.1088/0951-7715/22/5/012. Google Scholar

[43]

C. Simó and A. Vieiro, Planar radial weakly dissipative diffeomorphisms,, Chaos, 20 (2010). doi: 10.1063/1.3515168. Google Scholar

[44]

C. Simó and A. Vieiro, Dynamics in chaotic zones of area preserving maps: Close to separatrix and global instability zones,, Phys. D, 240 (2011), 732. doi: 10.1016/j.physd.2010.12.005. Google Scholar

[45]

F. Takens, Singularities of vector fields,, Inst.Hautes Etudes Sci. Publ. Math., 43 (1974), 47. Google Scholar

[46]

W. C. Troy, The existence of steady solutions of the Kuramoto-Sivashinsky equation,, J. Differential Equations, 82 (1989), 269. doi: 10.1016/0022-0396(89)90134-4. Google Scholar

[47]

R. Vitolo, H. W. Broer and C. Simó, Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms,, Nonlinearity, 23 (2010), 1919. doi: 10.1088/0951-7715/23/8/007. Google Scholar

[48]

R. Vitolo, H. W. Broer and C. Simó, Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems,, Regul. Chaotic Dyn., 16 (2011), 154. doi: 10.1134/S1560354711010060. Google Scholar

[49]

K. N. Webster and J. Elgin, Asymptotic analysis of the Michelson system,, Nonlinearity, 16 (2003), 2149. doi: 10.1088/0951-7715/16/6/316. Google Scholar

[50]

D. Wilczak, Symmetric heteroclinic connections in the Michelson system: A computer assisted proof (electronic),, SIAM J. Appl. Dyn. Syst., 4 (2005), 489. doi: 10.1137/040611112. Google Scholar

[51]

T.-S. Yang, On traveling wave solutions of the Kuramoto-Sivashinsky equation,, Phys. D, 110 (1997), 25. doi: 10.1016/S0167-2789(97)00121-8. Google Scholar

show all references

References:
[1]

K. L. Adams, J. R. King and R. H. Tew, Beyond-all-orders effects in multiple-scales asymptotics: Travelling-wave solutions to the Kuramoto-Sivashinsky equation,, J. Engrg. Math., 45 (2003), 197. doi: 10.1023/A:1022600411856. Google Scholar

[2]

I. Baldomá, O. Castejón and T. M. Seara, Exponentially small heteroclinic breakdown in the generic Hopf-Zero singularity,, Journal of Dynamics and Differential Equations (to appear)., (). Google Scholar

[3]

P. Bonckaert and E. Fontich, Invariant manifolds of maps close to a product of rotations: Close to the rotation axis,, J. Differential Equations, 191 (2003), 490. Google Scholar

[4]

P. Bonckaert and E. Fontich, Invariant manifolds of dynamical systems close to a rotation: Transverse to the rotation axis,, J. Differential Equations, 214 (2005), 128. doi: 10.1016/j.jde.2005.02.012. Google Scholar

[5]

H. W. Broer and G. Vegter, Subordinate Sil'nikov bifurcations near some singularities of vector fields having low codimension,, Ergodic Theory Dynam. Systems, 4 (1984), 509. doi: 10.1017/S0143385700002613. Google Scholar

[6]

H. W. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing,, Nonlinearity, 15 (2002), 1205. doi: 10.1088/0951-7715/15/4/312. Google Scholar

[7]

H. W. Broer, C. Simó and R. Vitolo, Quasi-periodic Hénon-like attractors in the Lorenz-84 climate model with seasonal forcing,, in, (2005), 601. doi: 10.1142/9789812702067_0100. Google Scholar

[8]

H. W. Broer, C. Simó and R. Vitolo, Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance bubble,, Phys. D, 237 (2008), 1773. doi: 10.1016/j.physd.2008.01.026. Google Scholar

[9]

H. W. Broer, C. Simó and R. Vitolo, The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol'd resonance web,, Bull. Belgian Math. Soc. Simon Stevin, 15 (2008), 769. Google Scholar

[10]

H. W. Broer, C. Simó and R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871. doi: 10.3934/dcdsb.2010.14.871. Google Scholar

[11]

A. R. Champneys and V. Kirk, The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities,, Phys. D, 195 (2004), 77. doi: 10.1016/j.physd.2004.03.004. Google Scholar

[12]

F. Dumortier and S. Ibáñez, Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields,, J. Differential Equations, 127 (1996), 590. doi: 10.1006/jdeq.1996.0085. Google Scholar

[13]

F. Dumortier and S. Ibáñez, Singularities of vector fields on $\mathbbR^3$,, Nonlinearity, 11 (1998), 1037. doi: 10.1088/0951-7715/11/4/015. Google Scholar

[14]

F. Dumortier, S. Ibáñez and H. Kokubu, New aspects in the unfolding of the nilpotent singularity of codimension three,, Dyn. Syst., 16 (2001), 63. doi: 10.1080/02681110010017417. Google Scholar

[15]

F. Dumortier, S. Ibáñez and H. Kokubu, Cocoon bifurcations in three-dimensional reversible vector fields,, Nonlinearity, 19 (2006), 305. doi: 10.1088/0951-7715/19/2/004. Google Scholar

[16]

E. Fontich and C. Simó, The splitting of sepratrices for analytic diffeomorphisms,, Ergodic Theory Dynam. Systems, 10 (1990), 295. doi: 10.1017/S0143385700005563. Google Scholar

[17]

E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices,, Ergodic Theory Dynam. Systems, 10 (1990), 319. doi: 10.1017/S0143385700005575. Google Scholar

[18]

P. Gaspard, Local birth of homoclinic chaos,, Phys. D, 62 (1993), 94. doi: 10.1016/0167-2789(93)90276-7. Google Scholar

[19]

N. K. Gavrilov, On some bifurcations of equilibria with a zero and a pair of purely imaginary roots, (1978),, in, (1987), 43. Google Scholar

[20]

P. Glendinning and C. Sparrow, Local and global behavior near homoclinic orbits,, J. Statist. Phys., 35 (1984), 645. doi: 10.1007/BF01010828. Google Scholar

[21]

J. Guckenheimer, On a codimension two bifurcation,, in, 898 (1981). Google Scholar

[22]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields,", $3^{rd}$ edition, (1990). Google Scholar

[23]

A. J. Homburg, Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria,, Nonlinearity, 15 (2002), 1029. doi: 10.1088/0951-7715/15/4/304. Google Scholar

[24]

S. Ibáñez and J. A. Rodríguez, Shil'nikov configurations in any generic unfolding of the nilpotent singularity of codimension three on $\mathbbR^3$,, J. Differential Equations, 208 (2005), 147. doi: 10.1016/j.jde.2003.08.006. Google Scholar

[25]

N. Ishimura, Remarks on third-order ODEs relevant to the Kuramoto-Sivashinsky equation,, J. Differential Equations, 178 (2002), 466. doi: 10.1006/jdeq.2001.4018. Google Scholar

[26]

J. Jones, W. C. Troy and A. D. McGillivary, Steady solutions of the Kuramoto-Sivashinsky equation for small wave speed,, J. Differential Equations, 96 (1992), 28. doi: 10.1016/0022-0396(92)90143-B. Google Scholar

[27]

P. Kent and J. Elgin, A Shil'nikov-type analysis in a system with symmetry,, Phys. Lett. A, 152 (1991), 28. doi: 10.1016/0375-9601(91)90623-G. Google Scholar

[28]

P. Kent and J. Elgin, Noose bifurcation of periodic orbits,, Nonlinearity, 4 (1991), 1045. doi: 10.1088/0951-7715/4/4/002. Google Scholar

[29]

P. Kent and J. Elgin, Travelling-waves of the Kuramoto-Sivashinsky equation: Period multiplyng bifurcations,, Nonlinearity, 5 (1992), 899. doi: 10.1088/0951-7715/5/4/004. Google Scholar

[30]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium,, Prog. Theor. Phys., 55 (1976), 356. doi: 10.1143/PTP.55.356. Google Scholar

[31]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory,", $3^{rd}$ edition, (2004). Google Scholar

[32]

J. S. W. Lamb, M.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $\mathbbR^3$,, J. Differential Equations, 219 (2005), 78. doi: 10.1016/j.jde.2005.02.019. Google Scholar

[33]

Y.-T. Lau, The "cocoon" bifurcations in three-dimensional systems with two fixed points,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2 (1992), 543. doi: 10.1142/S0218127492000690. Google Scholar

[34]

F. Ledrappier, M. Shub, C. Simó and A. Wilkinson, Random versus deterministic exponents in a rich family of diffeomorphisms,, J. Statist. Phys., 113 (2003), 85. doi: 10.1023/A:1025770720803. Google Scholar

[35]

C. K. McCord, Uniqueness of connecting orbits in the equation $Y^{(3)}=Y^2-1$,, J. Math. Anal. Appl., 114 (1986), 584. doi: 10.1016/0022-247X(86)90110-1. Google Scholar

[36]

D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation,, Phys. D, 19 (1986), 89. doi: 10.1016/0167-2789(86)90055-2. Google Scholar

[37]

J. Puig and C. Simó, Resonance tongues in the quasi-periodic Hill-Schrödinger equation with three frequencies,, Regul. Chaotic Dyn., 16 (2011), 61. doi: 10.1134/S1560354710520047. Google Scholar

[38]

S. V. Raghavan, J. B. McLeod and W. C. Troy, A singular perturbation problem arising from the Kuramoto-Sivashinsky equation,, Differential Integral Equations, 10 (1997), 1. Google Scholar

[39]

C. Simó, On the Hénon-Pomeau attractor,, J. Statist. Phys., 21 (1979), 465. doi: 10.1007/BF01009612. Google Scholar

[40]

C. Simó, Global dynamics and fast indicators,, in, (2001), 373. Google Scholar

[41]

C. Simó, Some properties of the global behaviour of conservative low-dimensional systems,, in, 363 (2009), 163. Google Scholar

[42]

C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps,, Nonlinearity, 22 (2009), 1191. doi: 10.1088/0951-7715/22/5/012. Google Scholar

[43]

C. Simó and A. Vieiro, Planar radial weakly dissipative diffeomorphisms,, Chaos, 20 (2010). doi: 10.1063/1.3515168. Google Scholar

[44]

C. Simó and A. Vieiro, Dynamics in chaotic zones of area preserving maps: Close to separatrix and global instability zones,, Phys. D, 240 (2011), 732. doi: 10.1016/j.physd.2010.12.005. Google Scholar

[45]

F. Takens, Singularities of vector fields,, Inst.Hautes Etudes Sci. Publ. Math., 43 (1974), 47. Google Scholar

[46]

W. C. Troy, The existence of steady solutions of the Kuramoto-Sivashinsky equation,, J. Differential Equations, 82 (1989), 269. doi: 10.1016/0022-0396(89)90134-4. Google Scholar

[47]

R. Vitolo, H. W. Broer and C. Simó, Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms,, Nonlinearity, 23 (2010), 1919. doi: 10.1088/0951-7715/23/8/007. Google Scholar

[48]

R. Vitolo, H. W. Broer and C. Simó, Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems,, Regul. Chaotic Dyn., 16 (2011), 154. doi: 10.1134/S1560354711010060. Google Scholar

[49]

K. N. Webster and J. Elgin, Asymptotic analysis of the Michelson system,, Nonlinearity, 16 (2003), 2149. doi: 10.1088/0951-7715/16/6/316. Google Scholar

[50]

D. Wilczak, Symmetric heteroclinic connections in the Michelson system: A computer assisted proof (electronic),, SIAM J. Appl. Dyn. Syst., 4 (2005), 489. doi: 10.1137/040611112. Google Scholar

[51]

T.-S. Yang, On traveling wave solutions of the Kuramoto-Sivashinsky equation,, Phys. D, 110 (1997), 25. doi: 10.1016/S0167-2789(97)00121-8. Google Scholar

[1]

I. Baldomá, Tere M. Seara. The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 323-347. doi: 10.3934/dcdsb.2008.10.323

[2]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[3]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[4]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[5]

Karsten Matthies. Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 585-602. doi: 10.3934/dcds.2003.9.585

[6]

Amadeu Delshams, Pere Gutiérrez. Exponentially small splitting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 757-783. doi: 10.3934/dcds.2004.11.757

[7]

Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039

[8]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[9]

Dongchen Li, Dmitry V. Turaev. Existence of heterodimensional cycles near Shilnikov loops in systems with a $\mathbb{Z}_2$ symmetry. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4399-4437. doi: 10.3934/dcds.2017189

[10]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128

[11]

Jaume Llibre, Ernesto Pérez-Chavela. Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1731-1736. doi: 10.3934/dcdsb.2014.19.1731

[12]

Isaac A. García, Claudia Valls. The three-dimensional center problem for the zero-Hopf singularity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2027-2046. doi: 10.3934/dcds.2016.36.2027

[13]

Lorenzo J. Díaz, Jorge Rocha. How do hyperbolic homoclinic classes collide at heterodimensional cycles?. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 589-627. doi: 10.3934/dcds.2007.17.589

[14]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[15]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[16]

Qi Wang, Yue Zhou. Sets of zero-difference balanced functions and their applications. Advances in Mathematics of Communications, 2014, 8 (1) : 83-101. doi: 10.3934/amc.2014.8.83

[17]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[18]

Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778

[19]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[20]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (15)

[Back to Top]