October  2013, 33(10): 4473-4495. doi: 10.3934/dcds.2013.33.4473

Dispersive estimates for matrix Schrödinger operators in dimension two

1. 

Department of Mathematics, University of Illinois, Urbana, IL 61801, United States

2. 

Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, United States

Received  November 2012 Revised  February 2013 Published  April 2013

We consider the non-selfadjoint operator \[ H = \left[\begin{array}{cc} -\Delta + \mu-V_1 & -V_2\\ V_2 & \Delta - \mu + V_1 \end{array} \right] \] where $\mu>0$ and $V_1,V_2$ are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave. Under natural spectral assumptions we obtain $L^1(\mathbb{R}^2)\times L^1(\mathbb{R}^2)\to L^\infty(\mathbb{R}^2)\times L^\infty(\mathbb{R}^2)$ dispersive decay estimates for the evolution $e^{it H}P_{ac}$. We also obtain the following weighted estimate $$ \|w^{-1} e^{it\mathcal H}P_{ac}f\|_{L^\infty(\mathbb R^2)\times L^\infty(\mathbb R^2)} ≲ \frac{1}{|t|\log^2(|t|)} \|w f\|_{L^1(\mathbb R^2)\times L^1(\mathbb R^2)},\,\,\,\,\,\,\,\, |t| >2, $$with $w(x)=\log^2(2+|x|)$.
Citation: M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," National Bureau of Standards Applied Mathematics Series, 55. For Sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964.  Google Scholar

[2]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151-218.  Google Scholar

[3]

R. Asad and G. Simpson, Embedded eigenvalues and the nonlinear Schrödinger equation, Journal of Mathematical Physics, 52 (2011), 033511. doi: 10.1063/1.3567152.  Google Scholar

[4]

M. Beceanu, A critical center-stable manifold for Schrödinger's equation in three dimensions, Comm. Pure Appl. Math., 65 (2012), 431-507. doi: 10.1002/cpa.21387.  Google Scholar

[5]

M. Beceanu and M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials, Comm. Math. Phys., 314 (2012), 471-481. doi: 10.1007/s00220-012-1435-x.  Google Scholar

[6]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.  Google Scholar

[7]

D. Bollé, F. Gesztesy and C. Danneels, Threshold scattering in two dimensions, Ann. Inst. H. Poincaré Phys. Théor., 48 (1988), 175-204.  Google Scholar

[8]

V. S. Buslaev and G. S. Perelman, Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, (Russian) Algebra i Analiz, 4 (1992), 63-102; translation in St. Petersburg Math. J., 4 (1993), 1111-1142.  Google Scholar

[9]

F. Cardosa, C. Cuevas and G. Vodev, Dispersive estimates for the Schrödinger equation in dimensions four and five, Asymptot. Anal., 62 (2009), 125-145. doi: 10.3233/ASY-2009-0916.  Google Scholar

[10]

O. Costin, M. Huang and W. Schlag, On the spectral properties of $L_{\pm}$ in three dimensions, Nonlinearity, 25 (2012), 125-164. doi: 10.1088/0951-7715/25/1/125.  Google Scholar

[11]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145. doi: 10.1002/cpa.1018.  Google Scholar

[12]

S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations, Comm. Math. Phys., 284 (2008), 51-77. doi: 10.1007/s00220-008-0605-3.  Google Scholar

[13]

S. Cuccagna and M. Tarulli, On asymptotic stability in energy space of ground states of NLS in 2D, Ann. I. H. Poincare, 26 (2009), 1361-1386. doi: 10.1016/j.anihpc.2008.12.001.  Google Scholar

[14]

L. Demanet and W. Schlag, Numerical verification of a gap condition for linearized NLS, Nonlinearity, 19 (2006), 829-852. doi: 10.1088/0951-7715/19/4/004.  Google Scholar

[15]

M. B. Erdoǧan and W. R. Green, Dispersive estimates for the Schrodinger equation for $C^\frac{n-3}{2}$ potentials in odd dimensions, Int. Math. Res. Notices, 13 (2010), 2532-2565. doi: 10.1093/imrn/rnp221.  Google Scholar

[16]

M. B. Erdoǧan and W. R. Green, Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy, To appear in Trans. Amer. Math. Soc., (2012). Google Scholar

[17]

M. B. Erdoǧan and W. R. Green, A weighted dispersive estimate for Schrödinger operators in dimension two, Comm. Math. Phys., 319 (2013), 791-811 doi: 10.1007/s00220-012-1640-7.  Google Scholar

[18]

M. B. Erdoǧan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I, Dynamics of PDE, 1 (2004), 359-379. doi: 10.1007/BF02789446.  Google Scholar

[19]

M. B. Erdoǧan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or eigenvalue at zero energy in dimension three: II, J. Anal. Math., 99 (2006), 199-248. doi: 10.1007/BF02789446.  Google Scholar

[20]

D. Finco and K. Yajima, The $L^p$ boundedness of wave operators for Schrödinger operators with threshold singularities II. Even dimensional case, J. Math. Sci. Univ. Tokyo, 13 (2006), 277-346.  Google Scholar

[21]

F. Gesztesy, C. K. R. T. Jones, Y. Latushkin and M. Stanislavova, A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations, Indiana Univ. Math. J., 49 (2000), 221-243. doi: 10.1512/iumj.2000.49.1838.  Google Scholar

[22]

M. Goldberg, Transport in the one-dimensional Schrödinger equation, Proc. Amer. Math. Soc., 135 (2007), 3171-3179. doi: 10.1090/S0002-9939-07-08897-1.  Google Scholar

[23]

M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three, Comm. Math. Phys., 251 (2004), 157-178. doi: 10.1007/s00220-004-1140-5.  Google Scholar

[24]

M. Goldberg and M. Visan, A counterexample to dispersive estimates, Comm. Math. Phys., 266 (2006), 211-238. doi: 10.1007/s00220-006-0013-5.  Google Scholar

[25]

W. R. Green, Dispersive estimates for matrix and scalar Schrödinger operators in dimension five, To appear in the Illinois J. Math., (2010).  Google Scholar

[26]

P. D. Hislop and I. M. Sigal, "Introduction to Spectral Theory. With Applications to Schrödinger Operators," Applied Mathematical Sciences, 113. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-0741-2.  Google Scholar

[27]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611. doi: 10.1215/S0012-7094-79-04631-3.  Google Scholar

[28]

A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds, Rev. Mat. Phys., 13 (2001), 717-754. doi: 10.1142/S0129055X01000843.  Google Scholar

[29]

A. Jensen and K. Yajima, A remark on $L^p$-boundedness of wave operators for two-dimensional Schrödinger operators, Comm. Math. Phys., 225 (2002), 633-637. doi: 10.1007/s002200100603.  Google Scholar

[30]

J.-L. Journé, A. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604. doi: 10.1002/cpa.3160440504.  Google Scholar

[31]

E. Kirr and A. Zarnescu, On the asymptotic stability of bound states in 2D cubic Schrödinger equation, Comm. Math. Phys., 272 (2007), 443-468. doi: 10.1007/s00220-007-0233-3.  Google Scholar

[32]

J. Marzuola, Dispersive estimates using scattering theory for matrix Hamiltonian equations, Discrete Cont. Dyn. Syst. - Series A, 30 (2011), 995-1036 doi: 10.3934/dcds.2011.30.995.  Google Scholar

[33]

J. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators, Nonlinearity, 24 (2011), 389-429. doi: 10.1088/0951-7715/24/2/003.  Google Scholar

[34]

T. Mizumachi, Asymptotic stability of small solitons for 2D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ., 47 (2007), 599-620.  Google Scholar

[35]

M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56. doi: 10.1016/0022-1236(82)90084-2.  Google Scholar

[36]

C.-A. Pillet and E. C. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differ. Eqs., 141 (1997), 310-326. doi: 10.1006/jdeq.1997.3345.  Google Scholar

[37]

J. Rauch, Local decay of scattering solutions to Schrödinger's equation, Comm. Math. Phys., 61 (1978), 149-168. doi: 10.1007/BF01609491.  Google Scholar

[38]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics I: Functional Analysis, IV: Analysis of Operators," Academic Press, New York, NY, 1972.  Google Scholar

[39]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513. doi: 10.1007/s00222-003-0325-4.  Google Scholar

[40]

I. Rodnianski, W. Schlag and A. Soffer, Dispersive analysis of charge transfer models, Comm. Pure Appl. Math., 58 (2005), 149-216. doi: 10.1002/cpa.20066.  Google Scholar

[41]

W. Schlag, Dispersive estimates for Schrödinger operators in dimension two, Comm. Math. Phys., 257 (2005), 87-117. doi: 10.1007/s00220-004-1262-9.  Google Scholar

[42]

W. Schlag, Spectral theory and nonlinear partial differential equations: A survey, Discrete Contin. Dyn. Syst., 15 (2006), 703-723. doi: 10.3934/dcds.2006.15.703.  Google Scholar

[43]

W. Schlag, Dispersive estimates for Schrödinger operators: A survey, Mathematical aspects of nonlinear dispersive equations, 255-285, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, (2007).  Google Scholar

[44]

W. Schlag, Stable manifolds for an orbitally unstable NLS, Ann. of Math. (2), 169 (2009), 139-227. doi: 10.4007/annals.2009.169.139.  Google Scholar

[45]

A. Soffer and M. Weinstein, Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys., 133 (1990), 119-146. doi: 10.1007/BF02096557.  Google Scholar

[46]

W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162. doi: 10.1007/BF01626517.  Google Scholar

[47]

R. Weder, Center manifold for nonintegrable nonlinear Schrödinger equations on the line, Commun. Math. Phys., 215 (2000), 343-356. doi: 10.1007/s002200000298.  Google Scholar

[48]

K. Yajima, $L^p$-boundedness of wave operators for two-dimensional Schrödinger operators, Comm. Math. Phys., 208 (1999), 125-152. doi: 10.1007/s002200050751.  Google Scholar

[49]

K. Yajima, The $L^p$ Boundedness of wave operators for Schrödinger operators with threshold singularities I. The odd dimensional case, J. Math. Sci. Univ. Tokyo, 13 (2006), 43-94.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," National Bureau of Standards Applied Mathematics Series, 55. For Sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964.  Google Scholar

[2]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151-218.  Google Scholar

[3]

R. Asad and G. Simpson, Embedded eigenvalues and the nonlinear Schrödinger equation, Journal of Mathematical Physics, 52 (2011), 033511. doi: 10.1063/1.3567152.  Google Scholar

[4]

M. Beceanu, A critical center-stable manifold for Schrödinger's equation in three dimensions, Comm. Pure Appl. Math., 65 (2012), 431-507. doi: 10.1002/cpa.21387.  Google Scholar

[5]

M. Beceanu and M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials, Comm. Math. Phys., 314 (2012), 471-481. doi: 10.1007/s00220-012-1435-x.  Google Scholar

[6]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.  Google Scholar

[7]

D. Bollé, F. Gesztesy and C. Danneels, Threshold scattering in two dimensions, Ann. Inst. H. Poincaré Phys. Théor., 48 (1988), 175-204.  Google Scholar

[8]

V. S. Buslaev and G. S. Perelman, Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, (Russian) Algebra i Analiz, 4 (1992), 63-102; translation in St. Petersburg Math. J., 4 (1993), 1111-1142.  Google Scholar

[9]

F. Cardosa, C. Cuevas and G. Vodev, Dispersive estimates for the Schrödinger equation in dimensions four and five, Asymptot. Anal., 62 (2009), 125-145. doi: 10.3233/ASY-2009-0916.  Google Scholar

[10]

O. Costin, M. Huang and W. Schlag, On the spectral properties of $L_{\pm}$ in three dimensions, Nonlinearity, 25 (2012), 125-164. doi: 10.1088/0951-7715/25/1/125.  Google Scholar

[11]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145. doi: 10.1002/cpa.1018.  Google Scholar

[12]

S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations, Comm. Math. Phys., 284 (2008), 51-77. doi: 10.1007/s00220-008-0605-3.  Google Scholar

[13]

S. Cuccagna and M. Tarulli, On asymptotic stability in energy space of ground states of NLS in 2D, Ann. I. H. Poincare, 26 (2009), 1361-1386. doi: 10.1016/j.anihpc.2008.12.001.  Google Scholar

[14]

L. Demanet and W. Schlag, Numerical verification of a gap condition for linearized NLS, Nonlinearity, 19 (2006), 829-852. doi: 10.1088/0951-7715/19/4/004.  Google Scholar

[15]

M. B. Erdoǧan and W. R. Green, Dispersive estimates for the Schrodinger equation for $C^\frac{n-3}{2}$ potentials in odd dimensions, Int. Math. Res. Notices, 13 (2010), 2532-2565. doi: 10.1093/imrn/rnp221.  Google Scholar

[16]

M. B. Erdoǧan and W. R. Green, Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy, To appear in Trans. Amer. Math. Soc., (2012). Google Scholar

[17]

M. B. Erdoǧan and W. R. Green, A weighted dispersive estimate for Schrödinger operators in dimension two, Comm. Math. Phys., 319 (2013), 791-811 doi: 10.1007/s00220-012-1640-7.  Google Scholar

[18]

M. B. Erdoǧan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I, Dynamics of PDE, 1 (2004), 359-379. doi: 10.1007/BF02789446.  Google Scholar

[19]

M. B. Erdoǧan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or eigenvalue at zero energy in dimension three: II, J. Anal. Math., 99 (2006), 199-248. doi: 10.1007/BF02789446.  Google Scholar

[20]

D. Finco and K. Yajima, The $L^p$ boundedness of wave operators for Schrödinger operators with threshold singularities II. Even dimensional case, J. Math. Sci. Univ. Tokyo, 13 (2006), 277-346.  Google Scholar

[21]

F. Gesztesy, C. K. R. T. Jones, Y. Latushkin and M. Stanislavova, A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations, Indiana Univ. Math. J., 49 (2000), 221-243. doi: 10.1512/iumj.2000.49.1838.  Google Scholar

[22]

M. Goldberg, Transport in the one-dimensional Schrödinger equation, Proc. Amer. Math. Soc., 135 (2007), 3171-3179. doi: 10.1090/S0002-9939-07-08897-1.  Google Scholar

[23]

M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three, Comm. Math. Phys., 251 (2004), 157-178. doi: 10.1007/s00220-004-1140-5.  Google Scholar

[24]

M. Goldberg and M. Visan, A counterexample to dispersive estimates, Comm. Math. Phys., 266 (2006), 211-238. doi: 10.1007/s00220-006-0013-5.  Google Scholar

[25]

W. R. Green, Dispersive estimates for matrix and scalar Schrödinger operators in dimension five, To appear in the Illinois J. Math., (2010).  Google Scholar

[26]

P. D. Hislop and I. M. Sigal, "Introduction to Spectral Theory. With Applications to Schrödinger Operators," Applied Mathematical Sciences, 113. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-0741-2.  Google Scholar

[27]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611. doi: 10.1215/S0012-7094-79-04631-3.  Google Scholar

[28]

A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds, Rev. Mat. Phys., 13 (2001), 717-754. doi: 10.1142/S0129055X01000843.  Google Scholar

[29]

A. Jensen and K. Yajima, A remark on $L^p$-boundedness of wave operators for two-dimensional Schrödinger operators, Comm. Math. Phys., 225 (2002), 633-637. doi: 10.1007/s002200100603.  Google Scholar

[30]

J.-L. Journé, A. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604. doi: 10.1002/cpa.3160440504.  Google Scholar

[31]

E. Kirr and A. Zarnescu, On the asymptotic stability of bound states in 2D cubic Schrödinger equation, Comm. Math. Phys., 272 (2007), 443-468. doi: 10.1007/s00220-007-0233-3.  Google Scholar

[32]

J. Marzuola, Dispersive estimates using scattering theory for matrix Hamiltonian equations, Discrete Cont. Dyn. Syst. - Series A, 30 (2011), 995-1036 doi: 10.3934/dcds.2011.30.995.  Google Scholar

[33]

J. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators, Nonlinearity, 24 (2011), 389-429. doi: 10.1088/0951-7715/24/2/003.  Google Scholar

[34]

T. Mizumachi, Asymptotic stability of small solitons for 2D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ., 47 (2007), 599-620.  Google Scholar

[35]

M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56. doi: 10.1016/0022-1236(82)90084-2.  Google Scholar

[36]

C.-A. Pillet and E. C. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differ. Eqs., 141 (1997), 310-326. doi: 10.1006/jdeq.1997.3345.  Google Scholar

[37]

J. Rauch, Local decay of scattering solutions to Schrödinger's equation, Comm. Math. Phys., 61 (1978), 149-168. doi: 10.1007/BF01609491.  Google Scholar

[38]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics I: Functional Analysis, IV: Analysis of Operators," Academic Press, New York, NY, 1972.  Google Scholar

[39]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513. doi: 10.1007/s00222-003-0325-4.  Google Scholar

[40]

I. Rodnianski, W. Schlag and A. Soffer, Dispersive analysis of charge transfer models, Comm. Pure Appl. Math., 58 (2005), 149-216. doi: 10.1002/cpa.20066.  Google Scholar

[41]

W. Schlag, Dispersive estimates for Schrödinger operators in dimension two, Comm. Math. Phys., 257 (2005), 87-117. doi: 10.1007/s00220-004-1262-9.  Google Scholar

[42]

W. Schlag, Spectral theory and nonlinear partial differential equations: A survey, Discrete Contin. Dyn. Syst., 15 (2006), 703-723. doi: 10.3934/dcds.2006.15.703.  Google Scholar

[43]

W. Schlag, Dispersive estimates for Schrödinger operators: A survey, Mathematical aspects of nonlinear dispersive equations, 255-285, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, (2007).  Google Scholar

[44]

W. Schlag, Stable manifolds for an orbitally unstable NLS, Ann. of Math. (2), 169 (2009), 139-227. doi: 10.4007/annals.2009.169.139.  Google Scholar

[45]

A. Soffer and M. Weinstein, Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys., 133 (1990), 119-146. doi: 10.1007/BF02096557.  Google Scholar

[46]

W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162. doi: 10.1007/BF01626517.  Google Scholar

[47]

R. Weder, Center manifold for nonintegrable nonlinear Schrödinger equations on the line, Commun. Math. Phys., 215 (2000), 343-356. doi: 10.1007/s002200000298.  Google Scholar

[48]

K. Yajima, $L^p$-boundedness of wave operators for two-dimensional Schrödinger operators, Comm. Math. Phys., 208 (1999), 125-152. doi: 10.1007/s002200050751.  Google Scholar

[49]

K. Yajima, The $L^p$ Boundedness of wave operators for Schrödinger operators with threshold singularities I. The odd dimensional case, J. Math. Sci. Univ. Tokyo, 13 (2006), 43-94.  Google Scholar

[1]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[2]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[3]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[4]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[5]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[6]

Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995

[7]

David Cruz-Uribe, SFO, José María Martell, Carlos Pérez. Sharp weighted estimates for approximating dyadic operators. Electronic Research Announcements, 2010, 17: 12-19. doi: 10.3934/era.2010.17.12

[8]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[9]

Yonggeun Cho, Tohru Ozawa, Suxia Xia. Remarks on some dispersive estimates. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1121-1128. doi: 10.3934/cpaa.2011.10.1121

[10]

Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure & Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Mouhamed Moustapha Fall. Regularity estimates for nonlocal Schrödinger equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1405-1456. doi: 10.3934/dcds.2019061

[13]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[14]

Mourad Bellassoued, Oumaima Ben Fraj. Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements. Inverse Problems & Imaging, 2020, 14 (5) : 841-865. doi: 10.3934/ipi.2020039

[15]

Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723

[16]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[17]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[18]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[19]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[20]

Dan-Andrei Geba, Evan Witz. Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations. Electronic Research Archive, 2020, 28 (2) : 627-649. doi: 10.3934/era.2020033

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]