October  2013, 33(10): 4497-4530. doi: 10.3934/dcds.2013.33.4497

Weak solutions of a gas-liquid drift-flux model with general slip law for wellbore operations

1. 

University of Stavanger (UiS), 4036 Stavanger

2. 

University of Stavanger, NO-4036 Stavanger, Norway

Received  November 2012 Revised  January 2013 Published  April 2013

In this work we study a compressible gas-liquid models highly relevant for wellbore operations like drilling. The model is a drift-flux model and is composed of two continuity equations together with a mixture momentum equation. The model allows unequal gas and liquid velocities, dictated by a so-called slip law, which is important for modeling of flow scenarios involving for example counter-current flow. The model is considered in Lagrangian coordinates. The difference in fluid velocities gives rise to new terms in the mixture momentum equation that are challenging to deal with. First, a local (in time) existence result is obtained under suitable assumptions on initial data for a general slip relation. Second, a global in time existence result is proved for small initial data subject to a more specialized slip relation.
Citation: Steinar Evje, Huanyao Wen. Weak solutions of a gas-liquid drift-flux model with general slip law for wellbore operations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4497-4530. doi: 10.3934/dcds.2013.33.4497
References:
[1]

C. S. Avelar, P. R. Ribeiro and K. Sepehrnoori, Deepwater gas kick simulation,, J. Pet. Sci. Eng., 67 (2009), 13. doi: 10.1016/j.petrol.2009.03.001. Google Scholar

[2]

M. Baudin, C. Berthon, F. Coquel, R. Masson and Q. H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law,, Numer. Math., 99 (2005), 411. doi: 10.1007/s00211-004-0558-1. Google Scholar

[3]

P. Chen and T. Zhang, A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients,, Comm. Pure. Appl. Anal., 7 (2008), 987. doi: 10.3934/cpaa.2008.7.987. Google Scholar

[4]

S. Evje, Weak solution for a gas-liquid model relevant for describing gas-kick oil wells,, SIAM J. Math. Anal., 43 (2011), 1887. doi: 10.1137/100813932. Google Scholar

[5]

S. Evje and K.-K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model,, J. Comput. Phys., 175 (2002), 674. doi: 10.1006/jcph.2001.6962. Google Scholar

[6]

S. Evje and K.-K. Fjelde, On a rough AUSM scheme for a one dimensional two-phase model,, Computers $&$ Fluids, 32 (2003), 1497. doi: 10.1016/S0045-7930(02)00113-5. Google Scholar

[7]

S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model,, J. Diff. Equations, 245 (2008), 2660. doi: 10.1016/j.jde.2007.10.032. Google Scholar

[8]

S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law,, Comm. Pure Appl. Anal., 8 (2009), 1867. doi: 10.3934/cpaa.2009.8.1867. Google Scholar

[9]

S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum,, Nonlinear Analysis TMA, 70 (2009), 3864. doi: 10.1016/j.na.2008.07.043. Google Scholar

[10]

L. Fan, Q. Q. Liu and C. J. Zhu, Convergence rates to stationary solutions of a gas-liquid model with external forces,, Nonlinearity, 25 (2012), 2875. doi: 10.1088/0951-7715/25/10/2875. Google Scholar

[11]

I. Faille and E. Heintze, A rough finite volume scheme for modeling two-phase flow in a pipeline,, Computers $&$ Fluids, 28 (1999), 213. doi: 10.1016/S0045-7930(98)00023-1. Google Scholar

[12]

K.-K. Fjelde and K.-H. Karlsen, High-resolution hybrid primitive-conservative upwind schemes for the drift flux model,, Computers $&$ Fluids, 31 (2002), 335. doi: 10.1016/S0045-7930(01)00041-X. Google Scholar

[13]

T. Flåtten and Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model,, ESAIM: Math. Mod. Num. Anal., 40 (2006), 735. doi: 10.1051/m2an:2006032. Google Scholar

[14]

S. L. Gavrilyuk and J. Fabre, Lagrangian coordinates for a drift-flux model of a gas-liquid mixture,, Int. J. Multiphase Flow, 22 (1996), 453. doi: 10.1016/0301-9322(95)00085-2. Google Scholar

[15]

D. Hoff, Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data,, Proc. Roy. Soc. Edinburgh Sect. A, 103 (1986), 301. doi: 10.1017/S0308210500018953. Google Scholar

[16]

M. Ishii, "Thermo-Fluid Dynamic Theory of Two-Phase Flow,", Eyrolles, (1975). Google Scholar

[17]

S. Jiang, Z. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity,, Meth. Appl. Anal., 12 (2005), 239. Google Scholar

[18]

T.-P. Liu, Z. Xin and T. Yang, Vacuum states for compressible flow,, Discrete Continuous Dyn. Sys., 4 (1998), 1. Google Scholar

[19]

Q. Q. Liu and C. J. Zhu, Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum,, J. Differential Equations, 252 (2012), 2492. doi: 10.1016/j.jde.2011.10.018. Google Scholar

[20]

R. J. Lorentzen and K. K. Fjelde, Use of slopelimiter techniques in traditional numerical methods for multi-phase flow in pipelines and wells,, Int. J. Numer. Meth. Fluids, 48 (2005), 723. doi: 10.1002/fld.952. Google Scholar

[21]

T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175. doi: 10.1137/S0036141097331044. Google Scholar

[22]

J. M. Masella, Q. H. Tran, D. Ferre and C. Pauchon, Transient simulation of two-phase flows in pipes,, Int. J. of Multiphase Flow, 24 (1998), 739. doi: 10.1016/S0301-9322(98)00004-4. Google Scholar

[23]

S. T. Munkejord, S. Evje and T. Flåtten, The multi-staged centred scheme approach applied to a drift-flux two-phase flow model,, Int. J. Num. Meth. Fluids, 52 (2006), 679. doi: 10.1002/fld.1200. Google Scholar

[24]

M. Okada, Free-boundary value problems for the equation of one-dimensional motion of viscous gas,, Japan J. Indust. Appl. Math., 6 (1989), 161. doi: 10.1007/BF03167921. Google Scholar

[25]

M. Okada, S. Matusu-Necasova and T. Makino, Free-boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity,, Ann. Univ. Ferrara Sez VII(N.S.), 48 (2002), 1. Google Scholar

[26]

J. E. Romate, An approximate Riemann solver for a two-phase flow model with numerically given slip relation,, Computers $&$ Fluid, 27 (1998), 455. doi: 10.1016/S0045-7930(97)00067-4. Google Scholar

[27]

J. Schlegel, T. Hibiki and M. Ishii, Development of a comprehensive set of drift-flux constitutive models for pipes of various hydraulic diameters,, Prog. Nuc. Energy, 52 (2010), 666. doi: 10.1016/j.pnucene.2010.03.007. Google Scholar

[28]

T. Yang, Z.-A. Yao and C.-J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Comm. Partial Diff. Eq., 26 (2001), 965. doi: 10.1081/PDE-100002385. Google Scholar

[29]

T. Yang and H.-J. Zhao, A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity,, J. Differential Equations, 184 (2002), 163. doi: 10.1006/jdeq.2001.4140. Google Scholar

[30]

T. Yang and C.-J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum,, Comm. Math. Phys., 230 (2002), 329. doi: 10.1007/s00220-002-0703-6. Google Scholar

[31]

L. Yao, H.-L. Guo and Z.-H. Guo, A note on viscous liquid-gas two-phase flow model with mass-dependent viscosity and vacuum,, Nonlinear Analysis: Real World Applications, 13 (2012), 2323. doi: 10.1016/j.nonrwa.2012.02.001. Google Scholar

[32]

L. Yao and C.-J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity,, J. Differential Equations, 247 (2009), 2705. doi: 10.1016/j.jde.2009.07.013. Google Scholar

[33]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum,, Math. Ann., 349 (2010), 903. doi: 10.1007/s00208-010-0544-0. Google Scholar

[34]

L. Yao, T. Zhang and C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2d viscous liquid-gas two-phase flow model,, SIAM J. Math. Anal., 42 (2010), 1874. doi: 10.1137/100785302. Google Scholar

[35]

L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model,, J. Differential Equations, 250 (2011), 3362. doi: 10.1016/j.jde.2010.12.006. Google Scholar

[36]

T. Zhang and D.-Y. Fang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient,, Arch. Rational Mech. Anal., 182 (2006), 223. doi: 10.1007/s00205-006-0425-6. Google Scholar

[37]

N. Zuber and J. A. Findlay, Average volumetric concentration in two-phase flow systems,, J. Heat Transfer, 87 (1965), 453. doi: 10.1115/1.3689137. Google Scholar

show all references

References:
[1]

C. S. Avelar, P. R. Ribeiro and K. Sepehrnoori, Deepwater gas kick simulation,, J. Pet. Sci. Eng., 67 (2009), 13. doi: 10.1016/j.petrol.2009.03.001. Google Scholar

[2]

M. Baudin, C. Berthon, F. Coquel, R. Masson and Q. H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law,, Numer. Math., 99 (2005), 411. doi: 10.1007/s00211-004-0558-1. Google Scholar

[3]

P. Chen and T. Zhang, A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients,, Comm. Pure. Appl. Anal., 7 (2008), 987. doi: 10.3934/cpaa.2008.7.987. Google Scholar

[4]

S. Evje, Weak solution for a gas-liquid model relevant for describing gas-kick oil wells,, SIAM J. Math. Anal., 43 (2011), 1887. doi: 10.1137/100813932. Google Scholar

[5]

S. Evje and K.-K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model,, J. Comput. Phys., 175 (2002), 674. doi: 10.1006/jcph.2001.6962. Google Scholar

[6]

S. Evje and K.-K. Fjelde, On a rough AUSM scheme for a one dimensional two-phase model,, Computers $&$ Fluids, 32 (2003), 1497. doi: 10.1016/S0045-7930(02)00113-5. Google Scholar

[7]

S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model,, J. Diff. Equations, 245 (2008), 2660. doi: 10.1016/j.jde.2007.10.032. Google Scholar

[8]

S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law,, Comm. Pure Appl. Anal., 8 (2009), 1867. doi: 10.3934/cpaa.2009.8.1867. Google Scholar

[9]

S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum,, Nonlinear Analysis TMA, 70 (2009), 3864. doi: 10.1016/j.na.2008.07.043. Google Scholar

[10]

L. Fan, Q. Q. Liu and C. J. Zhu, Convergence rates to stationary solutions of a gas-liquid model with external forces,, Nonlinearity, 25 (2012), 2875. doi: 10.1088/0951-7715/25/10/2875. Google Scholar

[11]

I. Faille and E. Heintze, A rough finite volume scheme for modeling two-phase flow in a pipeline,, Computers $&$ Fluids, 28 (1999), 213. doi: 10.1016/S0045-7930(98)00023-1. Google Scholar

[12]

K.-K. Fjelde and K.-H. Karlsen, High-resolution hybrid primitive-conservative upwind schemes for the drift flux model,, Computers $&$ Fluids, 31 (2002), 335. doi: 10.1016/S0045-7930(01)00041-X. Google Scholar

[13]

T. Flåtten and Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model,, ESAIM: Math. Mod. Num. Anal., 40 (2006), 735. doi: 10.1051/m2an:2006032. Google Scholar

[14]

S. L. Gavrilyuk and J. Fabre, Lagrangian coordinates for a drift-flux model of a gas-liquid mixture,, Int. J. Multiphase Flow, 22 (1996), 453. doi: 10.1016/0301-9322(95)00085-2. Google Scholar

[15]

D. Hoff, Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data,, Proc. Roy. Soc. Edinburgh Sect. A, 103 (1986), 301. doi: 10.1017/S0308210500018953. Google Scholar

[16]

M. Ishii, "Thermo-Fluid Dynamic Theory of Two-Phase Flow,", Eyrolles, (1975). Google Scholar

[17]

S. Jiang, Z. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity,, Meth. Appl. Anal., 12 (2005), 239. Google Scholar

[18]

T.-P. Liu, Z. Xin and T. Yang, Vacuum states for compressible flow,, Discrete Continuous Dyn. Sys., 4 (1998), 1. Google Scholar

[19]

Q. Q. Liu and C. J. Zhu, Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum,, J. Differential Equations, 252 (2012), 2492. doi: 10.1016/j.jde.2011.10.018. Google Scholar

[20]

R. J. Lorentzen and K. K. Fjelde, Use of slopelimiter techniques in traditional numerical methods for multi-phase flow in pipelines and wells,, Int. J. Numer. Meth. Fluids, 48 (2005), 723. doi: 10.1002/fld.952. Google Scholar

[21]

T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175. doi: 10.1137/S0036141097331044. Google Scholar

[22]

J. M. Masella, Q. H. Tran, D. Ferre and C. Pauchon, Transient simulation of two-phase flows in pipes,, Int. J. of Multiphase Flow, 24 (1998), 739. doi: 10.1016/S0301-9322(98)00004-4. Google Scholar

[23]

S. T. Munkejord, S. Evje and T. Flåtten, The multi-staged centred scheme approach applied to a drift-flux two-phase flow model,, Int. J. Num. Meth. Fluids, 52 (2006), 679. doi: 10.1002/fld.1200. Google Scholar

[24]

M. Okada, Free-boundary value problems for the equation of one-dimensional motion of viscous gas,, Japan J. Indust. Appl. Math., 6 (1989), 161. doi: 10.1007/BF03167921. Google Scholar

[25]

M. Okada, S. Matusu-Necasova and T. Makino, Free-boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity,, Ann. Univ. Ferrara Sez VII(N.S.), 48 (2002), 1. Google Scholar

[26]

J. E. Romate, An approximate Riemann solver for a two-phase flow model with numerically given slip relation,, Computers $&$ Fluid, 27 (1998), 455. doi: 10.1016/S0045-7930(97)00067-4. Google Scholar

[27]

J. Schlegel, T. Hibiki and M. Ishii, Development of a comprehensive set of drift-flux constitutive models for pipes of various hydraulic diameters,, Prog. Nuc. Energy, 52 (2010), 666. doi: 10.1016/j.pnucene.2010.03.007. Google Scholar

[28]

T. Yang, Z.-A. Yao and C.-J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Comm. Partial Diff. Eq., 26 (2001), 965. doi: 10.1081/PDE-100002385. Google Scholar

[29]

T. Yang and H.-J. Zhao, A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity,, J. Differential Equations, 184 (2002), 163. doi: 10.1006/jdeq.2001.4140. Google Scholar

[30]

T. Yang and C.-J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum,, Comm. Math. Phys., 230 (2002), 329. doi: 10.1007/s00220-002-0703-6. Google Scholar

[31]

L. Yao, H.-L. Guo and Z.-H. Guo, A note on viscous liquid-gas two-phase flow model with mass-dependent viscosity and vacuum,, Nonlinear Analysis: Real World Applications, 13 (2012), 2323. doi: 10.1016/j.nonrwa.2012.02.001. Google Scholar

[32]

L. Yao and C.-J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity,, J. Differential Equations, 247 (2009), 2705. doi: 10.1016/j.jde.2009.07.013. Google Scholar

[33]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum,, Math. Ann., 349 (2010), 903. doi: 10.1007/s00208-010-0544-0. Google Scholar

[34]

L. Yao, T. Zhang and C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2d viscous liquid-gas two-phase flow model,, SIAM J. Math. Anal., 42 (2010), 1874. doi: 10.1137/100785302. Google Scholar

[35]

L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model,, J. Differential Equations, 250 (2011), 3362. doi: 10.1016/j.jde.2010.12.006. Google Scholar

[36]

T. Zhang and D.-Y. Fang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient,, Arch. Rational Mech. Anal., 182 (2006), 223. doi: 10.1007/s00205-006-0425-6. Google Scholar

[37]

N. Zuber and J. A. Findlay, Average volumetric concentration in two-phase flow systems,, J. Heat Transfer, 87 (1965), 453. doi: 10.1115/1.3689137. Google Scholar

[1]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure & Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[2]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[3]

Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure & Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591

[4]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217

[5]

Steinar Evje, Huanyao Wen, Lei Yao. Global solutions to a one-dimensional non-conservative two-phase model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1927-1955. doi: 10.3934/dcds.2016.36.1927

[6]

Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021

[7]

Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic & Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001

[8]

Xavier Fernández-Real, Xavier Ros-Oton. On global solutions to semilinear elliptic equations related to the one-phase free boundary problem. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019238

[9]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[10]

Chueh-Hsin Chang, Chiun-Chuan Chen. Travelling wave solutions of a free boundary problem for a two-species competitive model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1065-1074. doi: 10.3934/cpaa.2013.12.1065

[11]

Steinar Evje, Kenneth Hvistendahl Karlsen. Global weak solutions for a viscous liquid-gas model with singular pressure law. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1867-1894. doi: 10.3934/cpaa.2009.8.1867

[12]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-18. doi: 10.3934/dcds.2019239

[13]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[14]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[15]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[16]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[17]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[18]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[19]

Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026

[20]

Flavia Smarrazzo, Andrea Terracina. Sobolev approximation for two-phase solutions of forward-backward parabolic problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1657-1697. doi: 10.3934/dcds.2013.33.1657

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]