-
Previous Article
An equivalent characterization of the summability condition for rational maps
- DCDS Home
- This Issue
-
Next Article
Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems
A Liouville theorem of degenerate elliptic equation and its application
1. | School of Mathematical Science, Fudan University, Shanghai, 200433, China |
References:
[1] |
A. D. Alexandrov, Uniqueness theorems for surfaces in the large. V., Amer. Math. Soc. Transl.(2), 21 (1962), 412-416. |
[2] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[3] |
W.-X. Chen, C.-M. Li and B. OU, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[4] |
W.-X. Chen and C.-M. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5. |
[5] |
W.-X. Chen and C.-M. Li, "Methods on Nonlinear Elliptic Equations," AIMS, 2010. |
[6] |
S-Y A. Chang and P. C. Yang, On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Research Letters, 4 (1997), 91-102. |
[7] |
G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I(8), 5 (1956), 1-30. |
[8] |
G. Fichera, On a unified theory of boundary value problems for elliptic-parabolic equations of second order, Boundary problems in differential equations, Univ. of Wisconsin Press, Madison, Wis., (1960), 97-120. |
[9] |
B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via maximum principle, Comm. Math. Phys., 68 (1979), 209-243. |
[10] |
B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb R^n$, Mathematical analysis and applications, Part A, 369-402. Advances in Mathematics, Supplementary Studies, 7a. Academic Press, New York-London, (1981). |
[11] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[12] |
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.
doi: 10.1080/03605308108820196. |
[13] |
J.-X. Hong, On boundary value problems for mixed equations with characteristic degenerate surfaces, Chin. Ann. of Math., 2 (1981), 407-424. |
[14] |
J.-X. Hong and G.-G. Huang, $L^p$ and Hölder estimates for a class of degenerate elliptic partial differential equations and its applications,, Int. Math. Res. Notices, 2012 (): 2889.
|
[15] |
M. V. Keldyš, On certain cases of degeneration of equations of elliptic type on the boundary of a domain, (Russian) Dokl. Akad. Nauk SSSR, 77 (1951), 181-183. |
[16] |
C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb R^n$, Commment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052. |
[17] |
C.-M. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math, 123 (1996), 221-231.
doi: 10.1007/s002220050023. |
[18] |
C.-M. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057.
doi: 10.1137/080712301. |
[19] |
Y.-Y. Li, Remarks on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180. |
[20] |
O. A. Oleinik and E. V. Radkevic, "Second Order Equations with Nonnegative Characteristic Form," Translated from the Russian by Paul C. Fife. Plenum Press, New York-London, 1973. |
[21] |
J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318. |
[22] |
J.-C. Wei and X.-W. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258. |
[23] |
X.-W. Xu, Classification of solutions of certain fourth-order nonlinear elliptic equations in $\mathbb R^4$, Pacific J. Math., 225 (2006), 361-378.
doi: 10.2140/pjm.2006.225.361. |
show all references
References:
[1] |
A. D. Alexandrov, Uniqueness theorems for surfaces in the large. V., Amer. Math. Soc. Transl.(2), 21 (1962), 412-416. |
[2] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[3] |
W.-X. Chen, C.-M. Li and B. OU, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[4] |
W.-X. Chen and C.-M. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5. |
[5] |
W.-X. Chen and C.-M. Li, "Methods on Nonlinear Elliptic Equations," AIMS, 2010. |
[6] |
S-Y A. Chang and P. C. Yang, On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Research Letters, 4 (1997), 91-102. |
[7] |
G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I(8), 5 (1956), 1-30. |
[8] |
G. Fichera, On a unified theory of boundary value problems for elliptic-parabolic equations of second order, Boundary problems in differential equations, Univ. of Wisconsin Press, Madison, Wis., (1960), 97-120. |
[9] |
B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via maximum principle, Comm. Math. Phys., 68 (1979), 209-243. |
[10] |
B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb R^n$, Mathematical analysis and applications, Part A, 369-402. Advances in Mathematics, Supplementary Studies, 7a. Academic Press, New York-London, (1981). |
[11] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[12] |
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.
doi: 10.1080/03605308108820196. |
[13] |
J.-X. Hong, On boundary value problems for mixed equations with characteristic degenerate surfaces, Chin. Ann. of Math., 2 (1981), 407-424. |
[14] |
J.-X. Hong and G.-G. Huang, $L^p$ and Hölder estimates for a class of degenerate elliptic partial differential equations and its applications,, Int. Math. Res. Notices, 2012 (): 2889.
|
[15] |
M. V. Keldyš, On certain cases of degeneration of equations of elliptic type on the boundary of a domain, (Russian) Dokl. Akad. Nauk SSSR, 77 (1951), 181-183. |
[16] |
C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb R^n$, Commment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052. |
[17] |
C.-M. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math, 123 (1996), 221-231.
doi: 10.1007/s002220050023. |
[18] |
C.-M. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057.
doi: 10.1137/080712301. |
[19] |
Y.-Y. Li, Remarks on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180. |
[20] |
O. A. Oleinik and E. V. Radkevic, "Second Order Equations with Nonnegative Characteristic Form," Translated from the Russian by Paul C. Fife. Plenum Press, New York-London, 1973. |
[21] |
J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318. |
[22] |
J.-C. Wei and X.-W. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258. |
[23] |
X.-W. Xu, Classification of solutions of certain fourth-order nonlinear elliptic equations in $\mathbb R^4$, Pacific J. Math., 225 (2006), 361-378.
doi: 10.2140/pjm.2006.225.361. |
[1] |
Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661 |
[2] |
Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052 |
[3] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011 |
[4] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[5] |
Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1 |
[6] |
Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051 |
[7] |
Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 |
[8] |
Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139 |
[9] |
Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029 |
[10] |
Yue Cao. Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28 (1) : 27-46. doi: 10.3934/era.2020003 |
[11] |
Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569 |
[12] |
Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069 |
[13] |
Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051 |
[14] |
Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022075 |
[15] |
Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809 |
[16] |
Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115 |
[17] |
Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027 |
[18] |
C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88 |
[19] |
Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020 |
[20] |
Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]