October  2013, 33(10): 4567-4578. doi: 10.3934/dcds.2013.33.4567

An equivalent characterization of the summability condition for rational maps

1. 

School of Mathematics and Information Science, Henan University, Kaifeng 475004, China

Received  October 2012 Revised  February 2013 Published  April 2013

We give an equivalent characterization of the summability condition in terms of the backward contracting property defined by Juan Rivera-Letelier, for rational maps of degree at least two which are expanding away from critical points.
Citation: Huaibin Li. An equivalent characterization of the summability condition for rational maps. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4567-4578. doi: 10.3934/dcds.2013.33.4567
References:
[1]

H. Bruin, J. Rivera-Letelier, W. Shen and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., 172 (2008), 509-533. doi: 10.1007/s00222-007-0108-4.

[2]

H. Bruin, W. Shen and S. van Strien, Invariant measures exist without a growth condition, Comm. Math. Phys., 241 (2003), 287-306.

[3]

P. Collet and J. Eckmann, Positive Liapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems, 3 (1983), 13-46. doi: 10.1017/S0143385700001802.

[4]

J. Graczyk and S. Smirnov, Collet, Eckmann and Hölder, Invent. Math., 133 (1998), 69-96. doi: 10.1007/s002220050239.

[5]

J. Graczyk and S. Smirnov, Non-uniform hyperbolicity in complex dynamics, Invent. Math., 175 (2009), 335-415. doi: 10.1007/s00222-008-0152-8.

[6]

O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc. (3), 99 (2009), 275-296. doi: 10.1112/plms/pdn055.

[7]

H. Li and W. Shen, Dimensions of rational maps satisfying the backward contraction property, Fund. Math., 198 (2008), 165-176. doi: 10.4064/fm198-2-6.

[8]

H. Li and W. Shen, On non-uniform hyperbolicity assumptions in one-dimensional dynamics, Science China Math., 53 (2010), 1663-1677. doi: 10.1007/s11425-010-3134-4.

[9]

H. Li and W. Shen, Topological invariance of a strong summability condition in one-dimensional dynamics, Int. Math. Res. Not., 8 (2013), 1783-1799. doi: 10.1093/imrn/rns105.

[10]

T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math., 132 (1998), 633-680. doi: 10.1007/s002220050236.

[11]

F. Przytycki, Hölder implies Collet-Eckmann, Géométrie complexe et systèes dynamiques (Orsay, 1995), Astérisque, 261 (2000), 385-403.

[12]

F. Przytycki and J. Rivera-Letelier, Statistical properties of topological Collet-Eckman maps, Ann. Sci. Ecole Sup. Norm., 40 (2007), 135-178. doi: 10.1016/j.ansens.2006.11.002.

[13]

F. Przytycki, J. Rivera-Letelier and S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math., 151 (2003), 29-63. doi: 10.1007/s00222-002-0243-x.

[14]

J. Rivera-Letelier, A connecting lemma for rational maps satisfying a no growth condition, Ergodic Theory Dynam. Systems, 27 (2007), 595-636. doi: 10.1017/S0143385706000629.

[15]

J. Rivera-Letelier, Asymptotic expansion of smooth interval maps, preprint, arXiv:1204.3071.

[16]

J. Rivera-Letelier and W. Shen, Statistical properties of one-dimensional maps under weak hyperbolicity assumptions, preprint, arXiv:1004.0230.

show all references

References:
[1]

H. Bruin, J. Rivera-Letelier, W. Shen and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., 172 (2008), 509-533. doi: 10.1007/s00222-007-0108-4.

[2]

H. Bruin, W. Shen and S. van Strien, Invariant measures exist without a growth condition, Comm. Math. Phys., 241 (2003), 287-306.

[3]

P. Collet and J. Eckmann, Positive Liapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems, 3 (1983), 13-46. doi: 10.1017/S0143385700001802.

[4]

J. Graczyk and S. Smirnov, Collet, Eckmann and Hölder, Invent. Math., 133 (1998), 69-96. doi: 10.1007/s002220050239.

[5]

J. Graczyk and S. Smirnov, Non-uniform hyperbolicity in complex dynamics, Invent. Math., 175 (2009), 335-415. doi: 10.1007/s00222-008-0152-8.

[6]

O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc. (3), 99 (2009), 275-296. doi: 10.1112/plms/pdn055.

[7]

H. Li and W. Shen, Dimensions of rational maps satisfying the backward contraction property, Fund. Math., 198 (2008), 165-176. doi: 10.4064/fm198-2-6.

[8]

H. Li and W. Shen, On non-uniform hyperbolicity assumptions in one-dimensional dynamics, Science China Math., 53 (2010), 1663-1677. doi: 10.1007/s11425-010-3134-4.

[9]

H. Li and W. Shen, Topological invariance of a strong summability condition in one-dimensional dynamics, Int. Math. Res. Not., 8 (2013), 1783-1799. doi: 10.1093/imrn/rns105.

[10]

T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math., 132 (1998), 633-680. doi: 10.1007/s002220050236.

[11]

F. Przytycki, Hölder implies Collet-Eckmann, Géométrie complexe et systèes dynamiques (Orsay, 1995), Astérisque, 261 (2000), 385-403.

[12]

F. Przytycki and J. Rivera-Letelier, Statistical properties of topological Collet-Eckman maps, Ann. Sci. Ecole Sup. Norm., 40 (2007), 135-178. doi: 10.1016/j.ansens.2006.11.002.

[13]

F. Przytycki, J. Rivera-Letelier and S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math., 151 (2003), 29-63. doi: 10.1007/s00222-002-0243-x.

[14]

J. Rivera-Letelier, A connecting lemma for rational maps satisfying a no growth condition, Ergodic Theory Dynam. Systems, 27 (2007), 595-636. doi: 10.1017/S0143385706000629.

[15]

J. Rivera-Letelier, Asymptotic expansion of smooth interval maps, preprint, arXiv:1204.3071.

[16]

J. Rivera-Letelier and W. Shen, Statistical properties of one-dimensional maps under weak hyperbolicity assumptions, preprint, arXiv:1004.0230.

[1]

Hans-Otto Walther. Contracting return maps for monotone delayed feedback. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 259-274. doi: 10.3934/dcds.2001.7.259

[2]

Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321

[3]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[4]

Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363

[5]

Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016

[6]

Richard Sharp, Anastasios Stylianou. Statistics of multipliers for hyperbolic rational maps. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1225-1241. doi: 10.3934/dcds.2021153

[7]

Russell Lodge, Sabyasachi Mukherjee. Invisible tricorns in real slices of rational maps. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1755-1797. doi: 10.3934/dcds.2020340

[8]

Yan Gao, Jinsong Zeng, Suo Zhao. A characterization of Sierpiński carpet rational maps. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5049-5063. doi: 10.3934/dcds.2017218

[9]

Jeffrey Diller, Han Liu, Roland K. W. Roeder. Typical dynamics of plane rational maps with equal degrees. Journal of Modern Dynamics, 2016, 10: 353-377. doi: 10.3934/jmd.2016.10.353

[10]

Yan Gao, Luxian Yang, Jinsong Zeng. Subhyperbolic rational maps on boundaries of hyperbolic components. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 319-326. doi: 10.3934/dcds.2021118

[11]

Yan Gao. Monotonicity of entropy for unimodal real quadratic rational maps. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022101

[12]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[13]

Stefano Galatolo, Rafael Lucena. Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1309-1360. doi: 10.3934/dcds.2020079

[14]

Magdalena Foryś-Krawiec, Jana Hantáková, Piotr Oprocha. On the structure of α-limit sets of backward trajectories for graph maps. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1435-1463. doi: 10.3934/dcds.2021159

[15]

Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375

[16]

Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135

[17]

Youming Wang, Fei Yang, Song Zhang, Liangwen Liao. Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5185-5206. doi: 10.3934/dcds.2019211

[18]

Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151

[19]

Khashayar Filom, Kevin M. Pilgrim. On the non-monotonicity of entropy for a class of real quadratic rational maps. Journal of Modern Dynamics, 2020, 16: 225-254. doi: 10.3934/jmd.2020008

[20]

Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]