October  2013, 33(10): 4567-4578. doi: 10.3934/dcds.2013.33.4567

An equivalent characterization of the summability condition for rational maps

1. 

School of Mathematics and Information Science, Henan University, Kaifeng 475004, China

Received  October 2012 Revised  February 2013 Published  April 2013

We give an equivalent characterization of the summability condition in terms of the backward contracting property defined by Juan Rivera-Letelier, for rational maps of degree at least two which are expanding away from critical points.
Citation: Huaibin Li. An equivalent characterization of the summability condition for rational maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4567-4578. doi: 10.3934/dcds.2013.33.4567
References:
[1]

H. Bruin, J. Rivera-Letelier, W. Shen and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps,, Invent. Math., 172 (2008), 509. doi: 10.1007/s00222-007-0108-4. Google Scholar

[2]

H. Bruin, W. Shen and S. van Strien, Invariant measures exist without a growth condition,, Comm. Math. Phys., 241 (2003), 287. Google Scholar

[3]

P. Collet and J. Eckmann, Positive Liapunov exponents and absolute continuity for maps of the interval,, Ergodic Theory Dynam. Systems, 3 (1983), 13. doi: 10.1017/S0143385700001802. Google Scholar

[4]

J. Graczyk and S. Smirnov, Collet, Eckmann and Hölder,, Invent. Math., 133 (1998), 69. doi: 10.1007/s002220050239. Google Scholar

[5]

J. Graczyk and S. Smirnov, Non-uniform hyperbolicity in complex dynamics,, Invent. Math., 175 (2009), 335. doi: 10.1007/s00222-008-0152-8. Google Scholar

[6]

O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials,, Proc. Lond. Math. Soc. (3), 99 (2009), 275. doi: 10.1112/plms/pdn055. Google Scholar

[7]

H. Li and W. Shen, Dimensions of rational maps satisfying the backward contraction property,, Fund. Math., 198 (2008), 165. doi: 10.4064/fm198-2-6. Google Scholar

[8]

H. Li and W. Shen, On non-uniform hyperbolicity assumptions in one-dimensional dynamics,, Science China Math., 53 (2010), 1663. doi: 10.1007/s11425-010-3134-4. Google Scholar

[9]

H. Li and W. Shen, Topological invariance of a strong summability condition in one-dimensional dynamics,, Int. Math. Res. Not., 8 (2013), 1783. doi: 10.1093/imrn/rns105. Google Scholar

[10]

T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps,, Invent. Math., 132 (1998), 633. doi: 10.1007/s002220050236. Google Scholar

[11]

F. Przytycki, Hölder implies Collet-Eckmann,, Géométrie complexe et systèes dynamiques (Orsay, 261 (2000), 385. Google Scholar

[12]

F. Przytycki and J. Rivera-Letelier, Statistical properties of topological Collet-Eckman maps,, Ann. Sci. Ecole Sup. Norm., 40 (2007), 135. doi: 10.1016/j.ansens.2006.11.002. Google Scholar

[13]

F. Przytycki, J. Rivera-Letelier and S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps,, Invent. Math., 151 (2003), 29. doi: 10.1007/s00222-002-0243-x. Google Scholar

[14]

J. Rivera-Letelier, A connecting lemma for rational maps satisfying a no growth condition,, Ergodic Theory Dynam. Systems, 27 (2007), 595. doi: 10.1017/S0143385706000629. Google Scholar

[15]

J. Rivera-Letelier, Asymptotic expansion of smooth interval maps,, preprint, (). Google Scholar

[16]

J. Rivera-Letelier and W. Shen, Statistical properties of one-dimensional maps under weak hyperbolicity assumptions,, preprint, (). Google Scholar

show all references

References:
[1]

H. Bruin, J. Rivera-Letelier, W. Shen and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps,, Invent. Math., 172 (2008), 509. doi: 10.1007/s00222-007-0108-4. Google Scholar

[2]

H. Bruin, W. Shen and S. van Strien, Invariant measures exist without a growth condition,, Comm. Math. Phys., 241 (2003), 287. Google Scholar

[3]

P. Collet and J. Eckmann, Positive Liapunov exponents and absolute continuity for maps of the interval,, Ergodic Theory Dynam. Systems, 3 (1983), 13. doi: 10.1017/S0143385700001802. Google Scholar

[4]

J. Graczyk and S. Smirnov, Collet, Eckmann and Hölder,, Invent. Math., 133 (1998), 69. doi: 10.1007/s002220050239. Google Scholar

[5]

J. Graczyk and S. Smirnov, Non-uniform hyperbolicity in complex dynamics,, Invent. Math., 175 (2009), 335. doi: 10.1007/s00222-008-0152-8. Google Scholar

[6]

O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials,, Proc. Lond. Math. Soc. (3), 99 (2009), 275. doi: 10.1112/plms/pdn055. Google Scholar

[7]

H. Li and W. Shen, Dimensions of rational maps satisfying the backward contraction property,, Fund. Math., 198 (2008), 165. doi: 10.4064/fm198-2-6. Google Scholar

[8]

H. Li and W. Shen, On non-uniform hyperbolicity assumptions in one-dimensional dynamics,, Science China Math., 53 (2010), 1663. doi: 10.1007/s11425-010-3134-4. Google Scholar

[9]

H. Li and W. Shen, Topological invariance of a strong summability condition in one-dimensional dynamics,, Int. Math. Res. Not., 8 (2013), 1783. doi: 10.1093/imrn/rns105. Google Scholar

[10]

T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps,, Invent. Math., 132 (1998), 633. doi: 10.1007/s002220050236. Google Scholar

[11]

F. Przytycki, Hölder implies Collet-Eckmann,, Géométrie complexe et systèes dynamiques (Orsay, 261 (2000), 385. Google Scholar

[12]

F. Przytycki and J. Rivera-Letelier, Statistical properties of topological Collet-Eckman maps,, Ann. Sci. Ecole Sup. Norm., 40 (2007), 135. doi: 10.1016/j.ansens.2006.11.002. Google Scholar

[13]

F. Przytycki, J. Rivera-Letelier and S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps,, Invent. Math., 151 (2003), 29. doi: 10.1007/s00222-002-0243-x. Google Scholar

[14]

J. Rivera-Letelier, A connecting lemma for rational maps satisfying a no growth condition,, Ergodic Theory Dynam. Systems, 27 (2007), 595. doi: 10.1017/S0143385706000629. Google Scholar

[15]

J. Rivera-Letelier, Asymptotic expansion of smooth interval maps,, preprint, (). Google Scholar

[16]

J. Rivera-Letelier and W. Shen, Statistical properties of one-dimensional maps under weak hyperbolicity assumptions,, preprint, (). Google Scholar

[1]

Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321

[2]

Hans-Otto Walther. Contracting return maps for monotone delayed feedback. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 259-274. doi: 10.3934/dcds.2001.7.259

[3]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[4]

Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363

[5]

Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016

[6]

Yan Gao, Jinsong Zeng, Suo Zhao. A characterization of Sierpiński carpet rational maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5049-5063. doi: 10.3934/dcds.2017218

[7]

Jeffrey Diller, Han Liu, Roland K. W. Roeder. Typical dynamics of plane rational maps with equal degrees. Journal of Modern Dynamics, 2016, 10: 353-377. doi: 10.3934/jmd.2016.10.353

[8]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[9]

Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375

[10]

Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135

[11]

Youming Wang, Fei Yang, Song Zhang, Liangwen Liao. Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5185-5206. doi: 10.3934/dcds.2019211

[12]

Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151

[13]

Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139

[14]

Zheng Yin, Ercai Chen. The conditional variational principle for maps with the pseudo-orbit tracing property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 463-481. doi: 10.3934/dcds.2019019

[15]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[16]

Yi Yang, Robert J. Sacker. Periodic unimodal Allee maps, the semigroup property and the $\lambda$-Ricker map with Allee effect. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 589-606. doi: 10.3934/dcdsb.2014.19.589

[17]

L. Angiuli, Luca Lorenzi. On improvement of summability properties in nonautonomous Kolmogorov equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1237-1265. doi: 10.3934/cpaa.2014.13.1237

[18]

Pedro Duarte, José Pedro GaivÃo, Mohammad Soufi. Hyperbolic billiards on polytopes with contracting reflection laws. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3079-3109. doi: 10.3934/dcds.2017132

[19]

Oliver Butterley, Carlangelo Liverani. Robustly invariant sets in fiber contracting bundle flows. Journal of Modern Dynamics, 2013, 7 (2) : 255-267. doi: 10.3934/jmd.2013.7.255

[20]

Lucio Boccardo, Luigi Orsina, Ireneo Peral. A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 513-523. doi: 10.3934/dcds.2006.16.513

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]