October  2013, 33(10): 4613-4626. doi: 10.3934/dcds.2013.33.4613

Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity

1. 

Laboratoire de Mathématiques UMR 6620 - CNRS, Université Blaise Pascal, Campus des Cézeaux -B.P. 80026, 63171 Aubière cedex, France

2. 

Department of Mathematics, Tsuda College, 2-1-1 Tsuda-machi, Kodaira-shi, Tokyo 187-8577, Japan

3. 

Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received  December 2012 Revised  March 2013 Published  April 2013

In this paper, we study a singular solution to the following elliptic equations: \begin{equation*} \left\{\begin{array}{ll} - \Delta u + |x|^{2}u - \lambda u - |u|^{p-1}u = 0, \quad x \in \mathbb{R}^{d}, & \\ u(x) > 0, \quad x \in \mathbb{R}^{d}, & \\ u(x) \to 0 \quad \text{as}\; |x| \to \infty, & \end{array}\right. \end{equation*} where $d \geq 3, \lambda >0$ and $p > 1$. In the spirit of Merle and Peletier [9], we shall show that in case of $p>(d+2)/(d-2)$, there is a unique value $\lambda = \lambda_{*}$ such that the equation with $\lambda = \lambda_{*}$ has a unique radial singular solution.
Citation: Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613
References:
[1]

J. Dolbeault and I. Flores, Geometry of phase space and solutions of semilinear elliptic equations in a ball,, Trans. Amer. Math. Soc., 359 (2007), 4073. doi: 10.1090/S0002-9947-07-04397-8. Google Scholar

[2]

Z. Guo and J. Wei, Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent,, Trans. Amer. Math. Soc., 363 (2011), 4777. doi: 10.1090/S0002-9947-2011-05292-X. Google Scholar

[3]

F. HadjSelem, Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential,, Nonlinearity, 24 (2011), 1795. doi: 10.1088/0951-7715/24/6/006. Google Scholar

[4]

F. HadjSelem and H. Kikuchi, Existence and non-existence of solution for semilinear elliptic equation with harmonic potential and Sobolev critical/supercritical nonlinearities,, J. Math. Anal. Appl., 387 (2012), 746. doi: 10.1016/j.jmaa.2011.09.034. Google Scholar

[5]

M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential,, J. Differential Equations, 178 (2002), 519. doi: 10.1006/jdeq.2000.4010. Google Scholar

[6]

M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential,, Funkcial. Ekvac., 50 (2007), 67. doi: 10.1619/fesi.50.67. Google Scholar

[7]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,, Arch. Rational Mech. Anal., 49 (): 241. Google Scholar

[8]

Y. Li and W.-M. Ni, Radial symmetry of positive solution of nonlinear elliptic equations in $\mathbbR^N$,, Comm. Partial Differential Equations, 18 (1993), 1043. doi: 10.1080/03605309308820960. Google Scholar

[9]

F. Merle and L. A. Peletier, Positive solutions of elliptic equations involving supercritical growth,, Proceeding of the Royal Society of Edingburgh, 118A (1991), 49. doi: 10.1017/S0308210500028882. Google Scholar

[10]

W.-M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The aumalous case,, Atti dei Convegni Lincei, 77 (1986), 6. Google Scholar

[11]

X. Wang, On the Cauchy problem for reaction-diffusion equations,, Trans. Amer. Math. Soc., 337 (1993), 549. doi: 10.1090/S0002-9947-1993-1153016-5. Google Scholar

show all references

References:
[1]

J. Dolbeault and I. Flores, Geometry of phase space and solutions of semilinear elliptic equations in a ball,, Trans. Amer. Math. Soc., 359 (2007), 4073. doi: 10.1090/S0002-9947-07-04397-8. Google Scholar

[2]

Z. Guo and J. Wei, Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent,, Trans. Amer. Math. Soc., 363 (2011), 4777. doi: 10.1090/S0002-9947-2011-05292-X. Google Scholar

[3]

F. HadjSelem, Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential,, Nonlinearity, 24 (2011), 1795. doi: 10.1088/0951-7715/24/6/006. Google Scholar

[4]

F. HadjSelem and H. Kikuchi, Existence and non-existence of solution for semilinear elliptic equation with harmonic potential and Sobolev critical/supercritical nonlinearities,, J. Math. Anal. Appl., 387 (2012), 746. doi: 10.1016/j.jmaa.2011.09.034. Google Scholar

[5]

M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential,, J. Differential Equations, 178 (2002), 519. doi: 10.1006/jdeq.2000.4010. Google Scholar

[6]

M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential,, Funkcial. Ekvac., 50 (2007), 67. doi: 10.1619/fesi.50.67. Google Scholar

[7]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,, Arch. Rational Mech. Anal., 49 (): 241. Google Scholar

[8]

Y. Li and W.-M. Ni, Radial symmetry of positive solution of nonlinear elliptic equations in $\mathbbR^N$,, Comm. Partial Differential Equations, 18 (1993), 1043. doi: 10.1080/03605309308820960. Google Scholar

[9]

F. Merle and L. A. Peletier, Positive solutions of elliptic equations involving supercritical growth,, Proceeding of the Royal Society of Edingburgh, 118A (1991), 49. doi: 10.1017/S0308210500028882. Google Scholar

[10]

W.-M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The aumalous case,, Atti dei Convegni Lincei, 77 (1986), 6. Google Scholar

[11]

X. Wang, On the Cauchy problem for reaction-diffusion equations,, Trans. Amer. Math. Soc., 337 (1993), 549. doi: 10.1090/S0002-9947-1993-1153016-5. Google Scholar

[1]

Vincent Millot, Yannick Sire, Hui Yu. Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6195-6214. doi: 10.3934/dcds.2018266

[2]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[3]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[4]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[5]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[6]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[7]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[8]

Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123

[9]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[10]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[11]

Zhihua Huang, Xiaochun Liu. Existence theorem for a class of semilinear totally characteristic elliptic equations involving supercritical cone sobolev exponents. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3201-3216. doi: 10.3934/cpaa.2019144

[12]

Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure & Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341

[13]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[14]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[15]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[16]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[17]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[18]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[19]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[20]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]