    October  2013, 33(10): 4613-4626. doi: 10.3934/dcds.2013.33.4613

## Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity

 1 Laboratoire de Mathématiques UMR 6620 - CNRS, Université Blaise Pascal, Campus des Cézeaux -B.P. 80026, 63171 Aubière cedex, France 2 Department of Mathematics, Tsuda College, 2-1-1 Tsuda-machi, Kodaira-shi, Tokyo 187-8577, Japan 3 Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received  December 2012 Revised  March 2013 Published  April 2013

In this paper, we study a singular solution to the following elliptic equations: \begin{equation*} \left\{\begin{array}{ll} - \Delta u + |x|^{2}u - \lambda u - |u|^{p-1}u = 0, \quad x \in \mathbb{R}^{d}, & \\ u(x) > 0, \quad x \in \mathbb{R}^{d}, & \\ u(x) \to 0 \quad \text{as}\; |x| \to \infty, & \end{array}\right. \end{equation*} where $d \geq 3, \lambda >0$ and $p > 1$. In the spirit of Merle and Peletier , we shall show that in case of $p>(d+2)/(d-2)$, there is a unique value $\lambda = \lambda_{*}$ such that the equation with $\lambda = \lambda_{*}$ has a unique radial singular solution.
Citation: Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613
##### References:
  J. Dolbeault and I. Flores, Geometry of phase space and solutions of semilinear elliptic equations in a ball, Trans. Amer. Math. Soc., 359 (2007), 4073-4087. doi: 10.1090/S0002-9947-07-04397-8.   Z. Guo and J. Wei, Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent, Trans. Amer. Math. Soc., 363 (2011), 4777-4799. doi: 10.1090/S0002-9947-2011-05292-X.   F. HadjSelem, Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential, Nonlinearity, 24 (2011), 1795-1819. doi: 10.1088/0951-7715/24/6/006.   F. HadjSelem and H. Kikuchi, Existence and non-existence of solution for semilinear elliptic equation with harmonic potential and Sobolev critical/supercritical nonlinearities, J. Math. Anal. Appl., 387 (2012), 746-754. doi: 10.1016/j.jmaa.2011.09.034.   M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differential Equations, 178 (2002), 519-540. doi: 10.1006/jdeq.2000.4010.   M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkcial. Ekvac., 50 (2007), 67-100. doi: 10.1619/fesi.50.67.   D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.  Y. Li and W.-M. Ni, Radial symmetry of positive solution of nonlinear elliptic equations in $\mathbb{R}^N2$, Comm. Partial Differential Equations, 18 (1993), 1043-1054. doi: 10.1080/03605309308820960.   F. Merle and L. A. Peletier, Positive solutions of elliptic equations involving supercritical growth, Proceeding of the Royal Society of Edingburgh, 118A (1991), 49-62. doi: 10.1017/S0308210500028882.   W.-M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The aumalous case, Atti dei Convegni Lincei, 77, Roma, 6-9 maggio (1986). X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590. doi: 10.1090/S0002-9947-1993-1153016-5.   show all references

##### References:
  J. Dolbeault and I. Flores, Geometry of phase space and solutions of semilinear elliptic equations in a ball, Trans. Amer. Math. Soc., 359 (2007), 4073-4087. doi: 10.1090/S0002-9947-07-04397-8.   Z. Guo and J. Wei, Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent, Trans. Amer. Math. Soc., 363 (2011), 4777-4799. doi: 10.1090/S0002-9947-2011-05292-X.   F. HadjSelem, Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential, Nonlinearity, 24 (2011), 1795-1819. doi: 10.1088/0951-7715/24/6/006.   F. HadjSelem and H. Kikuchi, Existence and non-existence of solution for semilinear elliptic equation with harmonic potential and Sobolev critical/supercritical nonlinearities, J. Math. Anal. Appl., 387 (2012), 746-754. doi: 10.1016/j.jmaa.2011.09.034.   M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differential Equations, 178 (2002), 519-540. doi: 10.1006/jdeq.2000.4010.   M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkcial. Ekvac., 50 (2007), 67-100. doi: 10.1619/fesi.50.67.   D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.  Y. Li and W.-M. Ni, Radial symmetry of positive solution of nonlinear elliptic equations in $\mathbb{R}^N2$, Comm. Partial Differential Equations, 18 (1993), 1043-1054. doi: 10.1080/03605309308820960.   F. Merle and L. A. Peletier, Positive solutions of elliptic equations involving supercritical growth, Proceeding of the Royal Society of Edingburgh, 118A (1991), 49-62. doi: 10.1017/S0308210500028882.   W.-M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The aumalous case, Atti dei Convegni Lincei, 77, Roma, 6-9 maggio (1986). X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590. doi: 10.1090/S0002-9947-1993-1153016-5.   Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108  Vincent Millot, Yannick Sire, Hui Yu. Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6195-6214. doi: 10.3934/dcds.2018266  Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047  Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057  José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138  Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128  Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259  Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525  Linglong Du, Xinyun Zhou. The stochastic delayed Cucker-Smale system in a harmonic potential field. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022022  Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068  Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231  Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123  Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363  Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51  Zhihua Huang, Xiaochun Liu. Existence theorem for a class of semilinear totally characteristic elliptic equations involving supercritical cone sobolev exponents. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3201-3216. doi: 10.3934/cpaa.2019144  Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure and Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341  Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206  Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991  Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure and Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527  David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

2021 Impact Factor: 1.588