October  2013, 33(10): 4627-4646. doi: 10.3934/dcds.2013.33.4627

Persistence and global stability for a class of discrete time structured population models

1. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804

2. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287

Received  September 2012 Revised  January 2013 Published  April 2013

We obtain sharp conditions distinguishing extinction from persistence and provide sufficient conditions for global stability of a positive fixed point for a class of discrete time dynamical systems on the positive cone of an ordered Banach space generated by a map which is, roughly speaking, a nonlinear, rank one perturbation of a linear contraction. Such maps were considered by Rebarber, Tenhumberg, and Towney (Theor. Pop. Biol. 81, 2012) as abstractions of a restricted class of density dependent integral population projection models modeling plant population dynamics. Significant improvements of their results are provided.
Citation: Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627
References:
[1]

H. Caswell, "Matrix Population Models, Construction, Analysis, and Interpretation,", 2nd ed., (2001). Google Scholar

[2]

J. M. Cushing, "An Introduction to Structured Population Dynamics,", CBMS-NSF Regional Conf. Series in Applied Math. 71, (1998). doi: 10.1137/1.9781611970005. Google Scholar

[3]

J. M. Cushing and Y. Zhou, The net reproductive value and stability in matrix population models,, Nat. Res. Mod., 8 (1994), 297. Google Scholar

[4]

N. Davydova, O. Diekmann and S. van Gils, On circulant populations. I. The algebra of semelparity,, Lin. Alg. Appl., 398 (2005), 185. doi: 10.1016/j.laa.2004.12.020. Google Scholar

[5]

W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups,, Differential Equations in Banach Spaces (A. Favini, 1223 (1986), 61. doi: 10.1007/BFb0099183. Google Scholar

[6]

O. Diekmann, N. Davydova and S. van Gils, On a boom and bust year class cycle,, J. Difference Equ. Appl., 11 (2005), 327. doi: 10.1080/10236190412331335409. Google Scholar

[7]

O. Diekmann and Ph. Getto, Boundedness, global existence and continuous dependence for nonlinear dynamical systems describing physiologically structured populations,, J. Diff. Equations, 215 (2005), 268. doi: 10.1016/j.jde.2004.10.025. Google Scholar

[8]

O. Diekmann, Ph. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars,, SIAM J. Math. Anal., 39 (): 1023. doi: 10.1137/060659211. Google Scholar

[9]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory,, J. Math. Biol., 43 (2001), 157. doi: 10.1007/s002850170002. Google Scholar

[10]

O. Diekmann, M. Gyllenberg and J. A. J. Metz, Steady-state analysis of structured population models,, Theor. Pop. Biol., 63 (2003), 309. doi: 10.1016/S0040-5809(02)00058-8. Google Scholar

[11]

O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. I. Linear theory,, J. Math. Biol., 36 (1998), 349. doi: 10.1007/s002850050104. Google Scholar

[12]

O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka and A. M. de Roos, Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example,, J. Math. Biol., 61 (2010), 277. doi: 10.1007/s00285-009-0299-y. Google Scholar

[13]

O. Diekmann, M. Gyllenberg and H. R. Thieme, Lack of uniqueness in transport equations with a nonlocal nonlinearity,, Math. Models Methods Appl. Sci., 10 (2000), 581. doi: 10.1142/S0218202500000318. Google Scholar

[14]

O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations,, SIAM J. Appl. Dyn. Sys., 8 (2009), 1160. doi: 10.1137/080722734. Google Scholar

[15]

O. Diekmann, S. A. van Gils and S. M. Verduyn Lunel, "Delay Equations: Functional-, Complex-, and Nonlinear Analysis,", Springer, (1995). doi: 10.1007/978-1-4612-4206-2. Google Scholar

[16]

O. Diekmann, Y. Wang and P. Yan, Carrying simplices in discrete competitive systems and age-structured semelparous populations,, Discrete Contin. Dyn. Syst., 20 (2008), 37. Google Scholar

[17]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", American Mathematical Society, (1988). Google Scholar

[18]

H. J. A. M. Heijmans, Some results from spectral theory,, in, (1987), 282. Google Scholar

[19]

M. A. Krasnosel'skij, "Positive Solutions of Operator Equations,", Noordhoff, (1964). Google Scholar

[20]

M. A. Krasnosel'skij, Je. A. Lifshits and A. V. Sobolev, "Positive Linear Systems: The Method of Positive Operators,", Heldermann Verlag, (1989). Google Scholar

[21]

C.-K. Li and H. Schneider, Applications of Perron-Frobenious theory to population dynamics,, J. Math. Biol., 44 (2002), 450. doi: 10.1007/s002850100132. Google Scholar

[22]

R. Rebarber, B. Tenhumberg and S. Townley, Global asymptotic stability of density dependent integral population projection models,, Theoretical Population Biology, 81 (2012), 81. doi: 10.1016/j.tpb.2011.11.002. Google Scholar

[23]

H. H. Schaefer, "Topological Vector Spaces,", Springer-Verlag, (1971). Google Scholar

[24]

H. L. Smith, The discrete dynamics of monotonically decomposable maps,, J. Math. Biology, 53 (2006), 747. doi: 10.1007/s00285-006-0004-3. Google Scholar

[25]

H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence,", Graduate Studies in Mathematics, 118 (2011). Google Scholar

[26]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread,, J. Math. Biol., 8 (1979), 173. doi: 10.1007/BF00279720. Google Scholar

[27]

H. R. Thieme, Well-posedness of physiologically structured population models for Daphnia magna (How biological concepts can benefit by abstract mathematical analysis),, J. Math. Biology, 26 (1988), 299. doi: 10.1007/BF00277393. Google Scholar

[28]

H. R. Thieme, "Mathematics in Population Biology,", Princeton University Press, (2003). Google Scholar

[29]

H. R. Thieme, Spectral bound and reproduction number for infinite dimensional population structure and time-heterogeneity,, SIAM J. Appl. Math., 70 (2009), 188. doi: 10.1137/080732870. Google Scholar

[30]

K. Yosida, "Functional Analysis,", Springer, (1968). Google Scholar

[31]

E. Zeidler., "Nonlinear Functional Analysis and Its Applications,", I Springer-Verlag, I (1993). Google Scholar

show all references

References:
[1]

H. Caswell, "Matrix Population Models, Construction, Analysis, and Interpretation,", 2nd ed., (2001). Google Scholar

[2]

J. M. Cushing, "An Introduction to Structured Population Dynamics,", CBMS-NSF Regional Conf. Series in Applied Math. 71, (1998). doi: 10.1137/1.9781611970005. Google Scholar

[3]

J. M. Cushing and Y. Zhou, The net reproductive value and stability in matrix population models,, Nat. Res. Mod., 8 (1994), 297. Google Scholar

[4]

N. Davydova, O. Diekmann and S. van Gils, On circulant populations. I. The algebra of semelparity,, Lin. Alg. Appl., 398 (2005), 185. doi: 10.1016/j.laa.2004.12.020. Google Scholar

[5]

W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups,, Differential Equations in Banach Spaces (A. Favini, 1223 (1986), 61. doi: 10.1007/BFb0099183. Google Scholar

[6]

O. Diekmann, N. Davydova and S. van Gils, On a boom and bust year class cycle,, J. Difference Equ. Appl., 11 (2005), 327. doi: 10.1080/10236190412331335409. Google Scholar

[7]

O. Diekmann and Ph. Getto, Boundedness, global existence and continuous dependence for nonlinear dynamical systems describing physiologically structured populations,, J. Diff. Equations, 215 (2005), 268. doi: 10.1016/j.jde.2004.10.025. Google Scholar

[8]

O. Diekmann, Ph. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars,, SIAM J. Math. Anal., 39 (): 1023. doi: 10.1137/060659211. Google Scholar

[9]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory,, J. Math. Biol., 43 (2001), 157. doi: 10.1007/s002850170002. Google Scholar

[10]

O. Diekmann, M. Gyllenberg and J. A. J. Metz, Steady-state analysis of structured population models,, Theor. Pop. Biol., 63 (2003), 309. doi: 10.1016/S0040-5809(02)00058-8. Google Scholar

[11]

O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. I. Linear theory,, J. Math. Biol., 36 (1998), 349. doi: 10.1007/s002850050104. Google Scholar

[12]

O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka and A. M. de Roos, Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example,, J. Math. Biol., 61 (2010), 277. doi: 10.1007/s00285-009-0299-y. Google Scholar

[13]

O. Diekmann, M. Gyllenberg and H. R. Thieme, Lack of uniqueness in transport equations with a nonlocal nonlinearity,, Math. Models Methods Appl. Sci., 10 (2000), 581. doi: 10.1142/S0218202500000318. Google Scholar

[14]

O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations,, SIAM J. Appl. Dyn. Sys., 8 (2009), 1160. doi: 10.1137/080722734. Google Scholar

[15]

O. Diekmann, S. A. van Gils and S. M. Verduyn Lunel, "Delay Equations: Functional-, Complex-, and Nonlinear Analysis,", Springer, (1995). doi: 10.1007/978-1-4612-4206-2. Google Scholar

[16]

O. Diekmann, Y. Wang and P. Yan, Carrying simplices in discrete competitive systems and age-structured semelparous populations,, Discrete Contin. Dyn. Syst., 20 (2008), 37. Google Scholar

[17]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", American Mathematical Society, (1988). Google Scholar

[18]

H. J. A. M. Heijmans, Some results from spectral theory,, in, (1987), 282. Google Scholar

[19]

M. A. Krasnosel'skij, "Positive Solutions of Operator Equations,", Noordhoff, (1964). Google Scholar

[20]

M. A. Krasnosel'skij, Je. A. Lifshits and A. V. Sobolev, "Positive Linear Systems: The Method of Positive Operators,", Heldermann Verlag, (1989). Google Scholar

[21]

C.-K. Li and H. Schneider, Applications of Perron-Frobenious theory to population dynamics,, J. Math. Biol., 44 (2002), 450. doi: 10.1007/s002850100132. Google Scholar

[22]

R. Rebarber, B. Tenhumberg and S. Townley, Global asymptotic stability of density dependent integral population projection models,, Theoretical Population Biology, 81 (2012), 81. doi: 10.1016/j.tpb.2011.11.002. Google Scholar

[23]

H. H. Schaefer, "Topological Vector Spaces,", Springer-Verlag, (1971). Google Scholar

[24]

H. L. Smith, The discrete dynamics of monotonically decomposable maps,, J. Math. Biology, 53 (2006), 747. doi: 10.1007/s00285-006-0004-3. Google Scholar

[25]

H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence,", Graduate Studies in Mathematics, 118 (2011). Google Scholar

[26]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread,, J. Math. Biol., 8 (1979), 173. doi: 10.1007/BF00279720. Google Scholar

[27]

H. R. Thieme, Well-posedness of physiologically structured population models for Daphnia magna (How biological concepts can benefit by abstract mathematical analysis),, J. Math. Biology, 26 (1988), 299. doi: 10.1007/BF00277393. Google Scholar

[28]

H. R. Thieme, "Mathematics in Population Biology,", Princeton University Press, (2003). Google Scholar

[29]

H. R. Thieme, Spectral bound and reproduction number for infinite dimensional population structure and time-heterogeneity,, SIAM J. Appl. Math., 70 (2009), 188. doi: 10.1137/080732870. Google Scholar

[30]

K. Yosida, "Functional Analysis,", Springer, (1968). Google Scholar

[31]

E. Zeidler., "Nonlinear Functional Analysis and Its Applications,", I Springer-Verlag, I (1993). Google Scholar

[1]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[2]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[3]

Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809

[4]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[5]

Guihong Fan, Yijun Lou, Horst R. Thieme, Jianhong Wu. Stability and persistence in ODE models for populations with many stages. Mathematical Biosciences & Engineering, 2015, 12 (4) : 661-686. doi: 10.3934/mbe.2015.12.661

[6]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[7]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[8]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[9]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[10]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[11]

Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933

[12]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[13]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[14]

Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85

[15]

Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs. Mathematical Biosciences & Engineering, 2015, 12 (2) : 311-335. doi: 10.3934/mbe.2015.12.311

[16]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[17]

G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 517-525. doi: 10.3934/dcdsb.2004.4.517

[18]

Ricardo Borges, Àngel Calsina, Sílvia Cuadrado. Equilibria of a cyclin structured cell population model. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 613-627. doi: 10.3934/dcdsb.2009.11.613

[19]

Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3439-3451. doi: 10.3934/dcdsb.2018327

[20]

Chunyan Ji, Daqing Jiang. Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 867-889. doi: 10.3934/dcds.2012.32.867

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]