• Previous Article
    Inertial manifolds for a class of non-autonomous semilinear parabolic equations with finite delay
  • DCDS Home
  • This Issue
  • Next Article
    Brownian-time Brownian motion SIEs on $\mathbb{R}_{+}$ × $\mathbb{R}^d$: Ultra regular direct and lattice-limits solutions and fourth order SPDEs links
February  2013, 33(2): 465-482. doi: 10.3934/dcds.2013.33.465

Zeta functions and topological entropy of periodic nonautonomous dynamical systems

1. 

Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Instituto Superior Técnico, TUL, Lisboa, Portugal

2. 

Mathematical Institute, Silesian University in Opava, Czech Republic

Received  August 2011 Revised  September 2011 Published  September 2012

In the setting of continuous piecewise monotone interval maps, we study the analytic properties of the zeta function of a periodic nonautonomous dynamical system. Based upon these properties we discuss the relationship between topological entropy and growth number of periodic points of a periodic nonautonomous dynamical system.
Citation: João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465
References:
[1]

R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy,, Trans. Amer. Math. Soc., 114 (1965), 309. doi: 10.1090/S0002-9947-1965-0175106-9. Google Scholar

[2]

Z. AlSharawi, J. Angelos, S. Elaydi and L. Rakesh, An extension of Sharkovsky's theorem to periodic difference equations,, J. Math. Anal. Appl., 316 (2006), 128. doi: 10.1016/j.jmaa.2005.04.059. Google Scholar

[3]

J. F. Alves and Sousa J. Ramos, Kneading theory for tree maps,, Ergodic Theory Dynam. Systems, 24 (2004), 957. doi: 10.1017/S014338570400015X. Google Scholar

[4]

J. F. Alves, R. Hric and J. S. Ramos, Topological entropy, homological growth and zeta functions on graphs,, Nonlinearity, 18 (2005), 591. doi: 10.1088/0951-7715/18/2/008. Google Scholar

[5]

J. F. Alves, What we need to find out the periods of a periodic difference equation,, J. Difference Equ. Appl., 15 (2009), 833. doi: 10.1080/10236190802357701. Google Scholar

[6]

M. Artin and B. Mazur, On periodic points,, Ann. of Math, 81 (1965), 82. doi: 10.2307/1970384. Google Scholar

[7]

M. Baillif, Dynamical zeta functions for tree maps,, Nonlinearity, 12 (1999), 1511. doi: 10.1088/0951-7715/12/6/305. Google Scholar

[8]

V. Baladi and D. Ruelle, An extension of the theorem of Milnor and Thurston on the zeta functions of interval maps,, Ergodic Theory Dynam. Systems, 14 (1994), 621. doi: 10.1017/S0143385700008087. Google Scholar

[9]

V. Baladi, Correlation spectrum of quenched and annealed equilibrium states for random expanding maps,, Comm. Math. Phys., 186 (1997), 671. doi: 10.1007/s002200050124. Google Scholar

[10]

V. Baladi, Periodic orbits and dynamical spectra,, Ergodic Theory Dynam. Systems, 18 (1998), 255. doi: 10.1017/S0143385798113925. Google Scholar

[11]

J. Buzzi, Some remarks on random zeta functions,, Ergodic Theory Dynam. Systems, 22 (2002), 1031. doi: 10.1017/S0143385702000524. Google Scholar

[12]

J. S. Cánovas and A. Linero, Periodic structure of alternating continuous interval maps,, J. Difference Equ. Appl., 12 (2006), 847. doi: 10.1080/10236190600772515. Google Scholar

[13]

S. Kolyada, M. Misiurewicz and L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval,, Fund. Math, 160 (1999), 161. Google Scholar

[14]

S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems,, Random Comput. Dynam., 4 (1996), 205. Google Scholar

[15]

J. Milnor and W. Thurston, "On Iterated Maps of the Interval,", Dynamical systems (College Park, (1342), 1986. Google Scholar

[16]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math, 67 (1980), 45. Google Scholar

[17]

D. Ruelle, An extension of the theory of Fredholm determinants,, Inst. Hautes Études Sci. Publ. Math, 72 (1990), 175. doi: 10.1007/BF02699133. Google Scholar

show all references

References:
[1]

R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy,, Trans. Amer. Math. Soc., 114 (1965), 309. doi: 10.1090/S0002-9947-1965-0175106-9. Google Scholar

[2]

Z. AlSharawi, J. Angelos, S. Elaydi and L. Rakesh, An extension of Sharkovsky's theorem to periodic difference equations,, J. Math. Anal. Appl., 316 (2006), 128. doi: 10.1016/j.jmaa.2005.04.059. Google Scholar

[3]

J. F. Alves and Sousa J. Ramos, Kneading theory for tree maps,, Ergodic Theory Dynam. Systems, 24 (2004), 957. doi: 10.1017/S014338570400015X. Google Scholar

[4]

J. F. Alves, R. Hric and J. S. Ramos, Topological entropy, homological growth and zeta functions on graphs,, Nonlinearity, 18 (2005), 591. doi: 10.1088/0951-7715/18/2/008. Google Scholar

[5]

J. F. Alves, What we need to find out the periods of a periodic difference equation,, J. Difference Equ. Appl., 15 (2009), 833. doi: 10.1080/10236190802357701. Google Scholar

[6]

M. Artin and B. Mazur, On periodic points,, Ann. of Math, 81 (1965), 82. doi: 10.2307/1970384. Google Scholar

[7]

M. Baillif, Dynamical zeta functions for tree maps,, Nonlinearity, 12 (1999), 1511. doi: 10.1088/0951-7715/12/6/305. Google Scholar

[8]

V. Baladi and D. Ruelle, An extension of the theorem of Milnor and Thurston on the zeta functions of interval maps,, Ergodic Theory Dynam. Systems, 14 (1994), 621. doi: 10.1017/S0143385700008087. Google Scholar

[9]

V. Baladi, Correlation spectrum of quenched and annealed equilibrium states for random expanding maps,, Comm. Math. Phys., 186 (1997), 671. doi: 10.1007/s002200050124. Google Scholar

[10]

V. Baladi, Periodic orbits and dynamical spectra,, Ergodic Theory Dynam. Systems, 18 (1998), 255. doi: 10.1017/S0143385798113925. Google Scholar

[11]

J. Buzzi, Some remarks on random zeta functions,, Ergodic Theory Dynam. Systems, 22 (2002), 1031. doi: 10.1017/S0143385702000524. Google Scholar

[12]

J. S. Cánovas and A. Linero, Periodic structure of alternating continuous interval maps,, J. Difference Equ. Appl., 12 (2006), 847. doi: 10.1080/10236190600772515. Google Scholar

[13]

S. Kolyada, M. Misiurewicz and L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval,, Fund. Math, 160 (1999), 161. Google Scholar

[14]

S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems,, Random Comput. Dynam., 4 (1996), 205. Google Scholar

[15]

J. Milnor and W. Thurston, "On Iterated Maps of the Interval,", Dynamical systems (College Park, (1342), 1986. Google Scholar

[16]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math, 67 (1980), 45. Google Scholar

[17]

D. Ruelle, An extension of the theory of Fredholm determinants,, Inst. Hautes Études Sci. Publ. Math, 72 (1990), 175. doi: 10.1007/BF02699133. Google Scholar

[1]

Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451

[2]

Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225

[3]

Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086

[4]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[5]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[6]

C. Kopf. Symbol sequences and entropy for piecewise monotone transformations with discontinuities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 299-304. doi: 10.3934/dcds.2000.6.299

[7]

Malo Jézéquel. Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 927-958. doi: 10.3934/dcds.2019039

[8]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[9]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[10]

Simon Scott. Relative zeta determinants and the geometry of the determinant line bundle. Electronic Research Announcements, 2001, 7: 8-16.

[11]

David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008

[12]

Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks & Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633

[13]

Richard Miles, Thomas Ward. Directional uniformities, periodic points, and entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3525-3545. doi: 10.3934/dcdsb.2015.20.3525

[14]

John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047

[15]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[16]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[17]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[18]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[19]

Chunqiu Li, Desheng Li, Xuewei Ju. On the forward dynamical behavior of nonautonomous systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 473-487. doi: 10.3934/dcdsb.2019190

[20]

Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]