October  2013, 33(10): 4731-4742. doi: 10.3934/dcds.2013.33.4731

Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms

1. 

Katedra Geometrii, Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Łódź, Poland

Received  September 2010 Revised  March 2013 Published  April 2013

We estimate expansion growth types (in the sense of Egashira) of certain distal groups of homeomorphisms and manifold diffeomorphisms.The estimate implies zero entropy (in the sense of Ghys, Langevin and the author) and existence of invariant measures for such groups. We prove also existence of invariant measures for pseudogroups satisfying some conditions of distality type.
Citation: Paweł G. Walczak. Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4731-4742. doi: 10.3934/dcds.2013.33.4731
References:
[1]

J. Alvarez Lopez and A. Candel, Equicontinuous foliated spaces,, Math. Z., 263 (2009), 725.  doi: 10.1007/s00209-008-0432-4.  Google Scholar

[2]

M. Badura, Prescribing growth type of complete Riemannian manifolds of bounded geometry,, Ann. Polon. Math., 75 (2000), 167.   Google Scholar

[3]

S. Banach, On Haar measure,, Uspekhi Mat. Nauk, 2 (1936), 161.   Google Scholar

[4]

A. Biś and P. Walczak, Entropy of distal groups, pseudogroups and laminations,, Ann. Polon. Math., 100 (2011), 45.  doi: 10.4064/ap100-1-5.  Google Scholar

[5]

A. Candel and L. Conlon, "Foliations I,", Amer. Math. Soc., (2000).   Google Scholar

[6]

S. Egashira, Expansion growth of foliations,, Ann. Fac. Sci. Toulouse, 2 (1993), 15.  doi: 10.5802/afst.756.  Google Scholar

[7]

R. Ellis, Distal transformation groups,, Pacific J. Math., 24 (1957), 401.  doi: 10.2140/pjm.1958.8.401.  Google Scholar

[8]

H. Furstenberg, The structure of distal flows,, Amer. J. Math., 85 (1963), 477.  doi: 10.2307/2373137.  Google Scholar

[9]

E. Ghys, R. Langevin and P. Walczak, Entropie géométrique des feuilletages,, Acta Math., 160 (1988), 105.  doi: 10.1007/BF02392274.  Google Scholar

[10]

A. Haefliger, Foliations and compactly generated pseudogroups,, in, (2000), 275.  doi: 10.1142/9789812778246_0013.  Google Scholar

[11]

S. Matsumoto, The unique ergodicity of equicontinuous laminations,, Hokkaido Math. J., 39 (2010), 389.   Google Scholar

[12]

W. Parry, Zero entropy of distal and related transformations,, in, (1968), 383.   Google Scholar

[13]

M. Rees, "On the Structure of Minimal Distal Transformation Groups with Topological Manifolds as Phase Spaces,", thesis, (1977).   Google Scholar

[14]

W. Rudin, "Real and Complex Analysis,", McGraw-Hill, (1966).   Google Scholar

[15]

S. Saks, "Monografie Matematyczne,", Theory of the Integral, 7 (1937).   Google Scholar

[16]

P. Walczak, "Dynamics of Foliations, Groups and Pseudogroups,", Monografie Matematyczne, 64 (2004).  doi: 10.1007/978-3-0348-7887-6.  Google Scholar

[17]

A. Weil, "L'intégration dans les Groupes Topologiques et ses Applications,", (French) [This book has been republished by the author at Princeton, 869 (1941).   Google Scholar

show all references

References:
[1]

J. Alvarez Lopez and A. Candel, Equicontinuous foliated spaces,, Math. Z., 263 (2009), 725.  doi: 10.1007/s00209-008-0432-4.  Google Scholar

[2]

M. Badura, Prescribing growth type of complete Riemannian manifolds of bounded geometry,, Ann. Polon. Math., 75 (2000), 167.   Google Scholar

[3]

S. Banach, On Haar measure,, Uspekhi Mat. Nauk, 2 (1936), 161.   Google Scholar

[4]

A. Biś and P. Walczak, Entropy of distal groups, pseudogroups and laminations,, Ann. Polon. Math., 100 (2011), 45.  doi: 10.4064/ap100-1-5.  Google Scholar

[5]

A. Candel and L. Conlon, "Foliations I,", Amer. Math. Soc., (2000).   Google Scholar

[6]

S. Egashira, Expansion growth of foliations,, Ann. Fac. Sci. Toulouse, 2 (1993), 15.  doi: 10.5802/afst.756.  Google Scholar

[7]

R. Ellis, Distal transformation groups,, Pacific J. Math., 24 (1957), 401.  doi: 10.2140/pjm.1958.8.401.  Google Scholar

[8]

H. Furstenberg, The structure of distal flows,, Amer. J. Math., 85 (1963), 477.  doi: 10.2307/2373137.  Google Scholar

[9]

E. Ghys, R. Langevin and P. Walczak, Entropie géométrique des feuilletages,, Acta Math., 160 (1988), 105.  doi: 10.1007/BF02392274.  Google Scholar

[10]

A. Haefliger, Foliations and compactly generated pseudogroups,, in, (2000), 275.  doi: 10.1142/9789812778246_0013.  Google Scholar

[11]

S. Matsumoto, The unique ergodicity of equicontinuous laminations,, Hokkaido Math. J., 39 (2010), 389.   Google Scholar

[12]

W. Parry, Zero entropy of distal and related transformations,, in, (1968), 383.   Google Scholar

[13]

M. Rees, "On the Structure of Minimal Distal Transformation Groups with Topological Manifolds as Phase Spaces,", thesis, (1977).   Google Scholar

[14]

W. Rudin, "Real and Complex Analysis,", McGraw-Hill, (1966).   Google Scholar

[15]

S. Saks, "Monografie Matematyczne,", Theory of the Integral, 7 (1937).   Google Scholar

[16]

P. Walczak, "Dynamics of Foliations, Groups and Pseudogroups,", Monografie Matematyczne, 64 (2004).  doi: 10.1007/978-3-0348-7887-6.  Google Scholar

[17]

A. Weil, "L'intégration dans les Groupes Topologiques et ses Applications,", (French) [This book has been republished by the author at Princeton, 869 (1941).   Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[7]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]