November  2013, 33(11&12): 4811-4840. doi: 10.3934/dcds.2013.33.4811

Singularity formation and blowup of complex-valued solutions of the modified KdV equation

1. 

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States

2. 

Université Paris 13, Sorbonne Paris Cité, CNRS UMR 7539 Laboratoire Analyse, Géométrie et Applications, 99 avenue J.B. Clément - 93430 Villetaneuse, France, France

Received  November 2011 Revised  August 2012 Published  May 2013

The dynamics of the poles of the two--soliton solutions of the modified Korteweg--de Vries equation $$ u_t + 6u^2u_x + u_{xxx} = 0 $$ are investigated. A consequence of this study is the existence of classes of smooth, complex--valued solutions of this equation, defined for $-\infty < x < \infty$, exponentially decreasing to zero as $|x| \to \infty$, that blow up in finite time.
Citation: Jerry L. Bona, Stéphane Vento, Fred B. Weissler. Singularity formation and blowup of complex-valued solutions of the modified KdV equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4811-4840. doi: 10.3934/dcds.2013.33.4811
References:
[1]

J. Bi, Novel solutions of MKdV-equation with the modified Bäcklund transformation,, J. Shanghai Univ., 8 (2004), 286.  doi: 10.1007/s11741-004-0065-8.  Google Scholar

[2]

B. Birnir, An example of blow-up for the complex KdV-equation and existence beyond the blow-up,, SIAM J. Appl. Math., 47 (1987), 710.  doi: 10.1137/0147049.  Google Scholar

[3]

J. L. Bona, J. Cohen and G. Wang, Global well posedness for a system of KdV-type equations with coupled quadratic nonlinearities,, to appear in the Nagoya Mathematical Journal., ().   Google Scholar

[4]

J. L. Bona, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation,, Philos. Trans. Royal Soc. London, 351 (1995), 107.  doi: 10.1098/rsta.1995.0027.  Google Scholar

[5]

J. L. Bona and Z. Grujiç, Spatial analyticity properties of nonlinear waves,, Math. Models Methods Appl. Sci., 13 (2003), 345.  doi: 10.1142/S0218202503002532.  Google Scholar

[6]

J. L. Bona, Z. Grujiç and H. Kalisch, Algebraic lower bounds for the uniform radius of spatrial analyticity for the generalized Korteweg-de Vries equation,, Ann. Inst. Henri Poincaré, 22 (2005), 783.  doi: 10.1016/j.anihpc.2004.12.004.  Google Scholar

[7]

J. L. Bona and J.-C. Saut, Dispersive blowup of generalized Korteweg-de Vries equations,, J. Differential Equations, 103 (1993), 3.  doi: 10.1006/jdeq.1993.1040.  Google Scholar

[8]

J. L. Bona and F. B. Weissler, Blow-up of spatially periodic complex-valued solutions of nonlinear dispersive equations,, Indiana Univ. Math. J., 50 (2001), 759.  doi: 10.1512/iumj.2001.50.1865.  Google Scholar

[9]

J. L. Bona and F. B. Weissler, Pole dynamics of interacting solitons and blowup of complex-valued solutions of KdV,, Nonlinearity, 22 (2009), 311.  doi: 10.1088/0951-7715/22/2/005.  Google Scholar

[10]

J. L. Bona and F. B. Weissler, Finite time blowup of spatially periodic, complex-vlaued solutions of the Kortweg-de Vries equation,, in preparation., ().   Google Scholar

[11]

G. Bowtell and A. E. G. Stuart, A particle representation of the Kortweg-de Vries soliton,, J. Math. Phys., 24 (1983), 969.  doi: 10.1063/1.525786.  Google Scholar

[12]

A. C. Bryan and A. E. G. Stuart, On the dynamics of soliton interactions for the Korteweg-de Vries equation,, Chaos, 2 (1992), 487.  doi: 10.1016/0960-0779(92)90024-H.  Google Scholar

[13]

Z. Grujiç and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions,, Diff. Integral Eqns., 15 (2002), 1325.   Google Scholar

[14]

M. D. Kruskal, The Korteweg-de Vries equation and related evolution equations,, Nonlinear Wave Motion (Lectures in Applied Mathematics 15 ) (ed. A. C. Newell), 15 ) (): 61.   Google Scholar

[15]

Y.-C. Li, Simple explicit formulae for finite time blowup solutions to the complex KdV equation,, Chaos, 39 (2009), 369.   Google Scholar

[16]

Y. Martel and F. Merle, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation,, Ann. of Math. (2), 155 (2002), 235.  doi: 10.2307/3062156.  Google Scholar

[17]

F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation,, J. American Math. Soc., 14 (2001), 555.  doi: 10.1090/S0894-0347-01-00369-1.  Google Scholar

[18]

W. R. Thickstun, A system of particles equivalent to solitons,, J. Math. Anal. Appl., 55 (1976), 335.  doi: 10.1016/0022-247X(76)90164-5.  Google Scholar

[19]

J. Wu and J.-M. Yuan, The complex KdV equation with or without dissipation,, Discrete Cont. Dynamical Sys., 5 (2005), 489.  doi: 10.3934/dcdsb.2005.5.489.  Google Scholar

show all references

References:
[1]

J. Bi, Novel solutions of MKdV-equation with the modified Bäcklund transformation,, J. Shanghai Univ., 8 (2004), 286.  doi: 10.1007/s11741-004-0065-8.  Google Scholar

[2]

B. Birnir, An example of blow-up for the complex KdV-equation and existence beyond the blow-up,, SIAM J. Appl. Math., 47 (1987), 710.  doi: 10.1137/0147049.  Google Scholar

[3]

J. L. Bona, J. Cohen and G. Wang, Global well posedness for a system of KdV-type equations with coupled quadratic nonlinearities,, to appear in the Nagoya Mathematical Journal., ().   Google Scholar

[4]

J. L. Bona, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation,, Philos. Trans. Royal Soc. London, 351 (1995), 107.  doi: 10.1098/rsta.1995.0027.  Google Scholar

[5]

J. L. Bona and Z. Grujiç, Spatial analyticity properties of nonlinear waves,, Math. Models Methods Appl. Sci., 13 (2003), 345.  doi: 10.1142/S0218202503002532.  Google Scholar

[6]

J. L. Bona, Z. Grujiç and H. Kalisch, Algebraic lower bounds for the uniform radius of spatrial analyticity for the generalized Korteweg-de Vries equation,, Ann. Inst. Henri Poincaré, 22 (2005), 783.  doi: 10.1016/j.anihpc.2004.12.004.  Google Scholar

[7]

J. L. Bona and J.-C. Saut, Dispersive blowup of generalized Korteweg-de Vries equations,, J. Differential Equations, 103 (1993), 3.  doi: 10.1006/jdeq.1993.1040.  Google Scholar

[8]

J. L. Bona and F. B. Weissler, Blow-up of spatially periodic complex-valued solutions of nonlinear dispersive equations,, Indiana Univ. Math. J., 50 (2001), 759.  doi: 10.1512/iumj.2001.50.1865.  Google Scholar

[9]

J. L. Bona and F. B. Weissler, Pole dynamics of interacting solitons and blowup of complex-valued solutions of KdV,, Nonlinearity, 22 (2009), 311.  doi: 10.1088/0951-7715/22/2/005.  Google Scholar

[10]

J. L. Bona and F. B. Weissler, Finite time blowup of spatially periodic, complex-vlaued solutions of the Kortweg-de Vries equation,, in preparation., ().   Google Scholar

[11]

G. Bowtell and A. E. G. Stuart, A particle representation of the Kortweg-de Vries soliton,, J. Math. Phys., 24 (1983), 969.  doi: 10.1063/1.525786.  Google Scholar

[12]

A. C. Bryan and A. E. G. Stuart, On the dynamics of soliton interactions for the Korteweg-de Vries equation,, Chaos, 2 (1992), 487.  doi: 10.1016/0960-0779(92)90024-H.  Google Scholar

[13]

Z. Grujiç and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions,, Diff. Integral Eqns., 15 (2002), 1325.   Google Scholar

[14]

M. D. Kruskal, The Korteweg-de Vries equation and related evolution equations,, Nonlinear Wave Motion (Lectures in Applied Mathematics 15 ) (ed. A. C. Newell), 15 ) (): 61.   Google Scholar

[15]

Y.-C. Li, Simple explicit formulae for finite time blowup solutions to the complex KdV equation,, Chaos, 39 (2009), 369.   Google Scholar

[16]

Y. Martel and F. Merle, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation,, Ann. of Math. (2), 155 (2002), 235.  doi: 10.2307/3062156.  Google Scholar

[17]

F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation,, J. American Math. Soc., 14 (2001), 555.  doi: 10.1090/S0894-0347-01-00369-1.  Google Scholar

[18]

W. R. Thickstun, A system of particles equivalent to solitons,, J. Math. Anal. Appl., 55 (1976), 335.  doi: 10.1016/0022-247X(76)90164-5.  Google Scholar

[19]

J. Wu and J.-M. Yuan, The complex KdV equation with or without dissipation,, Discrete Cont. Dynamical Sys., 5 (2005), 489.  doi: 10.3934/dcdsb.2005.5.489.  Google Scholar

[1]

Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations & Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027

[2]

Márcio Cavalcante, Chulkwang Kwak. Local well-posedness of the fifth-order KdV-type equations on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2607-2661. doi: 10.3934/cpaa.2019117

[3]

J. W. Choi, D. S. Lee, S. H. Oh, S. M. Sun, S. I. Whang. Multi-hump solutions of some singularly-perturbed equations of KdV type. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5181-5209. doi: 10.3934/dcds.2014.34.5181

[4]

Jerry L. Bona, Zoran Grujić, Henrik Kalisch. A KdV-type Boussinesq system: From the energy level to analytic spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1121-1139. doi: 10.3934/dcds.2010.26.1121

[5]

Shengfu Deng. Generalized multi-hump wave solutions of Kdv-Kdv system of Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3671-3716. doi: 10.3934/dcds.2019150

[6]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[7]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[8]

Jibin Li, Weigou Rui, Yao Long, Bin He. Travelling wave solutions for higher-order wave equations of KDV type (III). Mathematical Biosciences & Engineering, 2006, 3 (1) : 125-135. doi: 10.3934/mbe.2006.3.125

[9]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

[10]

Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733

[11]

Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations & Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1

[12]

Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206

[13]

Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020088

[14]

María Anguiano, P.E. Kloeden. Asymptotic behaviour of the nonautonomous SIR equations with diffusion. Communications on Pure & Applied Analysis, 2014, 13 (1) : 157-173. doi: 10.3934/cpaa.2014.13.157

[15]

Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure & Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511

[16]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[17]

Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks & Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003

[18]

Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793

[19]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[20]

Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

[Back to Top]