-
Previous Article
Expansive flows of surfaces
- DCDS Home
- This Issue
-
Next Article
Zeta functions and topological entropy of periodic nonautonomous dynamical systems
Inertial manifolds for a class of non-autonomous semilinear parabolic equations with finite delay
1. | Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam |
2. | The Academy of Journalism and Communication, 36 Xuan Thuy, Cau Giay, Hanoi, Vietnam |
3. | School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Vien Toan ung dung va Tin hoc, Dai hoc Bach khoa Hanoi, 1 Dai Co Viet, Hanoi, Vietnam |
References:
[1] |
A. Bensoussan and F. Landoli, Stochastic inertial manifolds,, Stochastics Rep., 53 (1995), 13.
|
[2] |
L. Boutet de Monvel, I. D. Chueshov and A. V. Rezounenko, Inertial manifolds for retarded semilinear parabolic equations,, Nonlinear Anal., 34 (1998), 907.
doi: 10.1016/S0362-546X(97)00569-5. |
[3] |
A. P. Calderon, Spaces between $L^1$ and $L^\infty$ and the theorem of Marcinkiewicz,, Studia Math, 26 (1996), 273.
|
[4] |
T. Caraballo and J. A. Langa, Tracking properties of trajectories on random attracting sets,, Stochastic Anal. Appl., 17 (1999), 339.
doi: 10.1080/07362999908809605. |
[5] |
I. D. Chueshov, Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise,, J. Dyn. Differ. Equations, 7 (1995), 549.
|
[6] |
I. D. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems,", Acta, (2002). Google Scholar |
[7] |
I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,, J. Dyn. Differ. Equations, 13 (2001), 355.
|
[8] |
C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,, J. Differ. Equations, 73 (1988), 309.
doi: 10.1016/0022-0396(88)90110-6. |
[9] |
A. Y. Goritskij and M. I. Vishik, Local integral manifolds for a nonautonomous parabolic equation,, J. Math. Sci., 85 (1997), 2428.
doi: 10.1007/BF02355848. |
[10] |
N. T. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line,, J. Funct. Anal., 235 (2006), 330.
doi: 10.1016/j.jfa.2005.11.002. |
[11] |
N. T. Huy, Inertial manifolds for semilinear parabolic equations in admissible spaces,, J. Math. Anal. Appl., 386 (2012), 894.
doi: 10.1016/j.jmaa.2011.08.051. |
[12] |
N. Koksch and S. Siegmund, Pullback attracting inertial manifols for nonautonomous dynamical systems,, J. Dyn. Differ. Equations, 14 (2002), 889.
|
[13] |
Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds,, Discrete and Continuous Dynamical System, 5 (1999), 233.
doi: 10.3934/dcds.1999.5.233. |
[14] |
J. Lindenstrauss and L. Tzafriri, "Classical Banach Spaces II, Function Spaces,", Springer-Verlag, (1979).
|
[15] |
J. J. Massera and J. J. Schäffer, "Linear Differential Equations and Function Spaces,", Academic Press, (1966).
|
[16] |
M. Taboado and Y. You, Invariant manifolds for retarded semilinear wave equations,, J. Differ. Equations, 114 (1994), 337.
doi: 10.1006/jdeq.1994.1153. |
[17] |
G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Springer, (2002).
|
[18] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, (1997).
|
show all references
References:
[1] |
A. Bensoussan and F. Landoli, Stochastic inertial manifolds,, Stochastics Rep., 53 (1995), 13.
|
[2] |
L. Boutet de Monvel, I. D. Chueshov and A. V. Rezounenko, Inertial manifolds for retarded semilinear parabolic equations,, Nonlinear Anal., 34 (1998), 907.
doi: 10.1016/S0362-546X(97)00569-5. |
[3] |
A. P. Calderon, Spaces between $L^1$ and $L^\infty$ and the theorem of Marcinkiewicz,, Studia Math, 26 (1996), 273.
|
[4] |
T. Caraballo and J. A. Langa, Tracking properties of trajectories on random attracting sets,, Stochastic Anal. Appl., 17 (1999), 339.
doi: 10.1080/07362999908809605. |
[5] |
I. D. Chueshov, Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise,, J. Dyn. Differ. Equations, 7 (1995), 549.
|
[6] |
I. D. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems,", Acta, (2002). Google Scholar |
[7] |
I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,, J. Dyn. Differ. Equations, 13 (2001), 355.
|
[8] |
C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,, J. Differ. Equations, 73 (1988), 309.
doi: 10.1016/0022-0396(88)90110-6. |
[9] |
A. Y. Goritskij and M. I. Vishik, Local integral manifolds for a nonautonomous parabolic equation,, J. Math. Sci., 85 (1997), 2428.
doi: 10.1007/BF02355848. |
[10] |
N. T. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line,, J. Funct. Anal., 235 (2006), 330.
doi: 10.1016/j.jfa.2005.11.002. |
[11] |
N. T. Huy, Inertial manifolds for semilinear parabolic equations in admissible spaces,, J. Math. Anal. Appl., 386 (2012), 894.
doi: 10.1016/j.jmaa.2011.08.051. |
[12] |
N. Koksch and S. Siegmund, Pullback attracting inertial manifols for nonautonomous dynamical systems,, J. Dyn. Differ. Equations, 14 (2002), 889.
|
[13] |
Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds,, Discrete and Continuous Dynamical System, 5 (1999), 233.
doi: 10.3934/dcds.1999.5.233. |
[14] |
J. Lindenstrauss and L. Tzafriri, "Classical Banach Spaces II, Function Spaces,", Springer-Verlag, (1979).
|
[15] |
J. J. Massera and J. J. Schäffer, "Linear Differential Equations and Function Spaces,", Academic Press, (1966).
|
[16] |
M. Taboado and Y. You, Invariant manifolds for retarded semilinear wave equations,, J. Differ. Equations, 114 (1994), 337.
doi: 10.1006/jdeq.1994.1153. |
[17] |
G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Springer, (2002).
|
[18] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, (1997).
|
[1] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[2] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[3] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[4] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[5] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[6] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[7] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[8] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[9] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[10] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[11] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[12] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[13] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[14] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021020 |
[15] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[16] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[17] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[18] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[19] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297 |
[20] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]