November  2013, 33(11&12): 4841-4873. doi: 10.3934/dcds.2013.33.4841

Periodic traveling--wave solutions of nonlinear dispersive evolution equations

1. 

Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee, 38152

2. 

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States

Received  February 2012 Revised  November 2012 Published  May 2013

For a general class of nonlinear, dispersive wave equations, existence of periodic, traveling-wave solutions is studied. These traveling waveforms are the analog of the classical cnoidal-wave solutions of the Korteweg-de Vries equation. They are determined to be stable to perturbation of the same period. Their large wavelength limit is shown to be solitary waves.
Citation: Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841
References:
[1]

L. Abdelouhab, J. L. Bona, M. Felland and J.-C. Saut, Non-local models for nonlinear, dispersive waves, Physica D, 40 (1989), 360-392. doi: 10.1016/0167-2789(89)90050-X.

[2]

J. P. Albert, Concentration compactness and the stability of solitary-wave solutions to nonlocal equations, Applied Analysis (Baton Rouge, LA 1996), Contemp. Math. 221, American Math. Soc., Providence, RI (1999), 1-29. doi: 10.1090/conm/221/03116.

[3]

J. P. Albert, J. L. Bona and D. Henry, Sufficient conditions for stability of solitary-wave solutions of model equations for long waves, Physica D, 24 (1987), 343-366. doi: 10.1016/0167-2789(87)90084-4.

[4]

C. J. Amick and J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation - a nonlinear Neumann problem in the plane, Acta Math., 167 (1991), 107-126. doi: 10.1007/BF02392447.

[5]

J. Angulo Pava, "Nonlinear Dispersive Equations," Mathematical Surveys and Monographs, 156, American Math. Soc.: Providence, RI 2009.

[6]

J. Angulo Pava, J. L. Bona and M. Scialom, Stability of cnoidal waves, Advances in Differenticial Equations, 11 (2006), 1321-1374.

[7]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592. doi: 10.1017/S002211206700103X.

[8]

T. B. Benjamin, The stability of solitary waves, Proc. Royal Soc. London Ser. A, 328 (1972), 153-183. doi: 10.1098/rspa.1972.0074.

[9]

T. B. Benjamin, Lectures on nonlinear wave motion, Lect. Appl. Math., 15, (ed. A. Newell) American Math. Soc., Providence, RI (1974), 3-47.

[10]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Royal Soc. London, Ser. A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032.

[11]

D. P. Bennett, R. W. Brown, S. E. Stansfield, J. D. Stroughair and J. L. Bona, The stability of internal solitary waves in stratified fluids, Math. Proc. Cambridge Philos. Soc., 94 (1983), 351-379. doi: 10.1017/S0305004100061193.

[12]

J. L. Bona, On the stability theory of solitary waves, Proc. Royal Soc. London, Ser. A, 344 (1975), 367-374. doi: 10.1098/rspa.1975.0106.

[13]

J. L. Bona, Convergence of periodic wave trains in the limit of large wavelength, Appl. Sci. Res., 37 (1981), 21-30. doi: 10.1007/BF00382614.

[14]

J. L. Bona, On solitary waves and their role in the evolution of long waves, in "Applications of Nonlinear Analysis in the Physical Sciences" (eds. H. Amann, N. Bazley and K. Kirchgässner), Pitman: London (1989), 183-205.

[15]

J. L. Bona and H. Kalisch, Models for internal waves in deep water, Discrete Cont. Dynamical Sys., 6 (2000), 1-20. doi: 10.3934/dcds.2000.6.1.

[16]

J. L. Bona, Y. Liu and N. Nguyen, Stability of solitary waves in higher-order Sobolev spaces, Commun. Math. Sci., 2 (2004), 35-52.

[17]

J. L. Bona, P. E. Souganidis and W. A. Strauss, Stability and instability of solitary waves of KdV-type, Proc. Royal Soc. London, Ser. A, 411 (1987), 395-412. doi: 10.1098/rspa.1987.0073.

[18]

J. L. Bona and A. Soyeur, On the stability of solitary-wave solutions of model equations for long waves, J. Nonlinear Sci., 4 (1994), 449-470. doi: 10.1007/BF02430641.

[19]

J. V. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 72 (1871), 755-759.

[20]

J. V. Boussinesq, Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, 73 (1871), 256-260.

[21]

H. Chen, Existence of periodic traveling-wave solutions of nonlinear, dispersive wave equations, Nonlinearity, 17 (2004), 2041-2056. doi: 10.1088/0951-7715/17/6/003.

[22]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Math. Soc.: Providence, 2000.

[23]

A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: A discussion centered around the Korteweg-De Vries equation, SIAM Review, 14 (1972), 582-643. doi: 10.1137/1014101.

[24]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine, 39 (1895), 422-443. doi: 10.1080/14786449508620739.

[25]

P.-L. Lions, The concentration-compactness principle in the calculus of variations, Part I, Ann. Inst. H. Poincaré, Analysis Nonlinear, 1 (1984), 109-145.

[26]

L. Molinet, J.-C. Saut and N. Tzvetkov, Ill-posedness Issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.

[27]

I. A. Svendsen and J. Buhr Hansen, Laboratory generation of waves of constant form, in the 14th Coastal Engr. Conf., Copenhagen (1974) Chapt. 17, pp. 321-339.

[28]

I. A. Svendsen and J. Buhr Hansen, On the deformation of periodic long waves over a gently sloping bottom, J. Fluid Mech., 87 (1978), 433-448. doi: 10.1017/S0022112078001706.

[29]

M. I. Weinstein, Liapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67. doi: 10.1002/cpa.3160390103.

show all references

References:
[1]

L. Abdelouhab, J. L. Bona, M. Felland and J.-C. Saut, Non-local models for nonlinear, dispersive waves, Physica D, 40 (1989), 360-392. doi: 10.1016/0167-2789(89)90050-X.

[2]

J. P. Albert, Concentration compactness and the stability of solitary-wave solutions to nonlocal equations, Applied Analysis (Baton Rouge, LA 1996), Contemp. Math. 221, American Math. Soc., Providence, RI (1999), 1-29. doi: 10.1090/conm/221/03116.

[3]

J. P. Albert, J. L. Bona and D. Henry, Sufficient conditions for stability of solitary-wave solutions of model equations for long waves, Physica D, 24 (1987), 343-366. doi: 10.1016/0167-2789(87)90084-4.

[4]

C. J. Amick and J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation - a nonlinear Neumann problem in the plane, Acta Math., 167 (1991), 107-126. doi: 10.1007/BF02392447.

[5]

J. Angulo Pava, "Nonlinear Dispersive Equations," Mathematical Surveys and Monographs, 156, American Math. Soc.: Providence, RI 2009.

[6]

J. Angulo Pava, J. L. Bona and M. Scialom, Stability of cnoidal waves, Advances in Differenticial Equations, 11 (2006), 1321-1374.

[7]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592. doi: 10.1017/S002211206700103X.

[8]

T. B. Benjamin, The stability of solitary waves, Proc. Royal Soc. London Ser. A, 328 (1972), 153-183. doi: 10.1098/rspa.1972.0074.

[9]

T. B. Benjamin, Lectures on nonlinear wave motion, Lect. Appl. Math., 15, (ed. A. Newell) American Math. Soc., Providence, RI (1974), 3-47.

[10]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Royal Soc. London, Ser. A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032.

[11]

D. P. Bennett, R. W. Brown, S. E. Stansfield, J. D. Stroughair and J. L. Bona, The stability of internal solitary waves in stratified fluids, Math. Proc. Cambridge Philos. Soc., 94 (1983), 351-379. doi: 10.1017/S0305004100061193.

[12]

J. L. Bona, On the stability theory of solitary waves, Proc. Royal Soc. London, Ser. A, 344 (1975), 367-374. doi: 10.1098/rspa.1975.0106.

[13]

J. L. Bona, Convergence of periodic wave trains in the limit of large wavelength, Appl. Sci. Res., 37 (1981), 21-30. doi: 10.1007/BF00382614.

[14]

J. L. Bona, On solitary waves and their role in the evolution of long waves, in "Applications of Nonlinear Analysis in the Physical Sciences" (eds. H. Amann, N. Bazley and K. Kirchgässner), Pitman: London (1989), 183-205.

[15]

J. L. Bona and H. Kalisch, Models for internal waves in deep water, Discrete Cont. Dynamical Sys., 6 (2000), 1-20. doi: 10.3934/dcds.2000.6.1.

[16]

J. L. Bona, Y. Liu and N. Nguyen, Stability of solitary waves in higher-order Sobolev spaces, Commun. Math. Sci., 2 (2004), 35-52.

[17]

J. L. Bona, P. E. Souganidis and W. A. Strauss, Stability and instability of solitary waves of KdV-type, Proc. Royal Soc. London, Ser. A, 411 (1987), 395-412. doi: 10.1098/rspa.1987.0073.

[18]

J. L. Bona and A. Soyeur, On the stability of solitary-wave solutions of model equations for long waves, J. Nonlinear Sci., 4 (1994), 449-470. doi: 10.1007/BF02430641.

[19]

J. V. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 72 (1871), 755-759.

[20]

J. V. Boussinesq, Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, 73 (1871), 256-260.

[21]

H. Chen, Existence of periodic traveling-wave solutions of nonlinear, dispersive wave equations, Nonlinearity, 17 (2004), 2041-2056. doi: 10.1088/0951-7715/17/6/003.

[22]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Math. Soc.: Providence, 2000.

[23]

A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: A discussion centered around the Korteweg-De Vries equation, SIAM Review, 14 (1972), 582-643. doi: 10.1137/1014101.

[24]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine, 39 (1895), 422-443. doi: 10.1080/14786449508620739.

[25]

P.-L. Lions, The concentration-compactness principle in the calculus of variations, Part I, Ann. Inst. H. Poincaré, Analysis Nonlinear, 1 (1984), 109-145.

[26]

L. Molinet, J.-C. Saut and N. Tzvetkov, Ill-posedness Issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.

[27]

I. A. Svendsen and J. Buhr Hansen, Laboratory generation of waves of constant form, in the 14th Coastal Engr. Conf., Copenhagen (1974) Chapt. 17, pp. 321-339.

[28]

I. A. Svendsen and J. Buhr Hansen, On the deformation of periodic long waves over a gently sloping bottom, J. Fluid Mech., 87 (1978), 433-448. doi: 10.1017/S0022112078001706.

[29]

M. I. Weinstein, Liapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67. doi: 10.1002/cpa.3160390103.

[1]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

[2]

Philippe Gravejat. Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 835-882. doi: 10.3934/dcds.2008.21.835

[3]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[4]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[5]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[6]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[7]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[8]

Jundong Wang, Lijun Zhang, Elena Shchepakina, Vladimir Sobolev. Solitary waves of singularly perturbed generalized KdV equation with high order nonlinearity. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022124

[9]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control and Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[10]

Brian Pigott. Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 389-418. doi: 10.3934/cpaa.2014.13.389

[11]

Massimiliano Gubinelli. Rough solutions for the periodic Korteweg--de~Vries equation. Communications on Pure and Applied Analysis, 2012, 11 (2) : 709-733. doi: 10.3934/cpaa.2012.11.709

[12]

Nate Bottman, Bernard Deconinck. KdV cnoidal waves are spectrally stable. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1163-1180. doi: 10.3934/dcds.2009.25.1163

[13]

Zengji Du, Xiaojie Lin, Yulin Ren. Dynamics of solitary waves and periodic waves for a generalized KP-MEW-Burgers equation with damping. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1987-2003. doi: 10.3934/cpaa.2021118

[14]

Yang Yang, Yun-Rui Yang, Xin-Jun Jiao. Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence. Electronic Research Archive, 2020, 28 (1) : 1-13. doi: 10.3934/era.2020001

[15]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[16]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[17]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[18]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[19]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[20]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]