November  2013, 33(11&12): 4923-4944. doi: 10.3934/dcds.2013.33.4923

On a Dirichlet problem in bounded domains with singular nonlinearity

1. 

Dipartimento di Matematica, Università di Bari, via Orabona 4, 70125 Bari, Italy

2. 

Department of Mathematics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy

Received  May 2012 Published  May 2013

In this paper we prove the existence and regularity of positive solutions of the homogeneous Dirichlet problem \begin{equation*} -Δ u=g(x,u)     in     \Omega,         u=0    on     ∂ \Omega, \end{equation*} where $g(x,u)$ can be singular as $u\rightarrow0^+$ and $0\le g(x,u)\le\frac{\varphi_0(x)}{u^p}$ or $0\le$ $ g(x,u)$ $\le$ $\varphi_0(x)(1+\frac{1}{u^p})$, with $\varphi_0 \in L^m(\Omega), 1 ≤ m.$ There are no assumptions on the monotonicity of $g(x,\cdot)$ and the existence of super- or sub-solutions.
Citation: Giuseppe Maria Coclite, Mario Michele Coclite. On a Dirichlet problem in bounded domains with singular nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4923-4944. doi: 10.3934/dcds.2013.33.4923
References:
[1]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37 (2010), 363-380. doi: 10.1007/s00526-009-0266-x.

[2]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Un. Mat. Ital., 1 (1998), 223-262.

[3]

M. M. Coclite, On a singular nonlinear dirichlet problem - II, Boll. Un. Mat. Ital., 5 (1991), 955-975.

[4]

M. M. Coclite, On a singular nonlinear Dirichlet problem - III, Nonlinear Anal., 21 (1993), 547-564. doi: 10.1016/0362-546X(93)90010-P.

[5]

G. M. Coclite and M. M. Coclite, Elliptic perturbations for Hammerstein equations with singular nonlinear term, Electron. J. Diff. Eqns., 2006 (2006), 23 pp. (electronic).

[6]

M. G. Crandal, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222. doi: 10.1080/03605307708820029.

[7]

G. Stampacchia, Le problème de Dirichlet poue les équations elliptiques du second order à coefficientes discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. doi: 10.5802/aif.204.

[8]

Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl., 116 (1986), 309-334. doi: 10.1016/S0022-247X(86)80001-4.

show all references

References:
[1]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37 (2010), 363-380. doi: 10.1007/s00526-009-0266-x.

[2]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Un. Mat. Ital., 1 (1998), 223-262.

[3]

M. M. Coclite, On a singular nonlinear dirichlet problem - II, Boll. Un. Mat. Ital., 5 (1991), 955-975.

[4]

M. M. Coclite, On a singular nonlinear Dirichlet problem - III, Nonlinear Anal., 21 (1993), 547-564. doi: 10.1016/0362-546X(93)90010-P.

[5]

G. M. Coclite and M. M. Coclite, Elliptic perturbations for Hammerstein equations with singular nonlinear term, Electron. J. Diff. Eqns., 2006 (2006), 23 pp. (electronic).

[6]

M. G. Crandal, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222. doi: 10.1080/03605307708820029.

[7]

G. Stampacchia, Le problème de Dirichlet poue les équations elliptiques du second order à coefficientes discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. doi: 10.5802/aif.204.

[8]

Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl., 116 (1986), 309-334. doi: 10.1016/S0022-247X(86)80001-4.

[1]

Trad Alotaibi, D. D. Hai, R. Shivaji. Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4655-4666. doi: 10.3934/cpaa.2020131

[2]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[3]

Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273

[4]

Alfonso Castro, Jorge Cossio, Carlos Vélez. Existence and qualitative properties of solutions for nonlinear Dirichlet problems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 123-140. doi: 10.3934/dcds.2013.33.123

[5]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[6]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[7]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[8]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure and Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[9]

Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear second-order integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596-604. doi: 10.3934/proc.2015.0596

[10]

Hongjing Pan, Ruixiang Xing. On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3627-3682. doi: 10.3934/dcds.2015.35.3627

[11]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[12]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure and Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[13]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[14]

Yu Guo, Xiao-Bao Shu, Qianbao Yin. Existence of solutions for first-order Hamiltonian random impulsive differential equations with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4455-4471. doi: 10.3934/dcdsb.2021236

[15]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[16]

Nicola Abatangelo, Serena Dipierro, Mouhamed Moustapha Fall, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1205-1235. doi: 10.3934/dcds.2019052

[17]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[18]

Gabriele Bonanno, Pasquale Candito, Roberto Livrea, Nikolaos S. Papageorgiou. Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1169-1188. doi: 10.3934/cpaa.2017057

[19]

Roberta Filippucci, Chiara Lini. Existence of solutions for quasilinear Dirichlet problems with gradient terms. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 267-286. doi: 10.3934/dcdss.2019019

[20]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (171)
  • HTML views (0)
  • Cited by (9)

[Back to Top]