• Previous Article
    On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces
  • DCDS Home
  • This Issue
  • Next Article
    Resolution and optimal regularity for a biharmonic equation with impedance boundary conditions and some generalizations
November  2013, 33(11&12): 5015-5047. doi: 10.3934/dcds.2013.33.5015

Local Hadamard well--posedness and blow--up for reaction--diffusion equations with non--linear dynamical boundary conditions

1. 

Dipartimento di Matematica "F. Enriques", Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy

2. 

Dipartimento di Matematica ed Informatica, Università di Perugia, Via Vanvitelli, 1, 06123 Perugia, Italy

Received  September 2011 Published  May 2013

The paper deals with local well--posedness, global existence and blow--up results for reaction--diffusion equations coupled with nonlinear dynamical boundary conditions. The typical problem studied is \[\begin{cases} u_{t}-\Delta u=|u|^{p-2} u        in   (0,\infty)\times\Omega,\\ u=0                    on     [0,\infty) \times \Gamma_{0},\\ \frac{\partial u}{\partial\nu} = -|u_{t}|^{m-2}u_{t}       on   [0,\infty)\times\Gamma_{1},\\ u(0,x)=u_{0}(x)         in   \Omega \end{cases}\] where $\Omega$ is a bounded open regular domain of $\mathbb{R}^{n}$ ($n\geq 1$), $\partial\Omega=\Gamma_0\cup\Gamma_1$, $2\le p\le 1+2^*/2$, $m>1$ and $u_0\in H^1(\Omega)$, ${u_0}_{|\Gamma_0}=0$. After showing local well--posedness in the Hadamard sense we give global existence and blow--up results when $\Gamma_0$ has positive surface measure. Moreover we discuss the generalization of the above mentioned results to more general problems where the terms $|u|^{p-2}u$ and $|u_{t}|^{m-2}u_{t}$ are respectively replaced by $f\left(x,u\right)$ and $Q(t,x,u_t)$ under suitable assumptions on them.
Citation: Alessio Fiscella, Enzo Vitillaro. Local Hadamard well--posedness and blow--up for reaction--diffusion equations with non--linear dynamical boundary conditions. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5015-5047. doi: 10.3934/dcds.2013.33.5015
References:
[1]

Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975, Pure and Applied Mathematics, 65, 1975.  Google Scholar

[2]

J. Differential Equations, 72 (1988), 201-269. doi: 10.1016/0022-0396(88)90156-8.  Google Scholar

[3]

C. R. Acad. Sci. Paris, 256 (1963), 5042-5044.  Google Scholar

[4]

Nonlinear Anal., 73 (2010), 1952-1965. doi: 10.1016/j.na.2010.05.024.  Google Scholar

[5]

Commun. Pure Appl. Anal., 9 (2010), 1161-1188. doi: 10.3934/cpaa.2010.9.1161.  Google Scholar

[6]

Arch. Ration. Mech. Anal., 196 (2010), 489-516. doi: 10.1007/s00205-009-0241-x.  Google Scholar

[7]

I. Bejenaru, J. I. Díaz and I. I. Vrabie, An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions,, Electron. J. Differential Equations, 2001 ().   Google Scholar

[8]

Discrete Contin. Dyn. Syst., 22 (2008), 835-860. doi: 10.3934/dcds.2008.22.835.  Google Scholar

[9]

J. Differential Equations, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[10]

Universitext, Springer, New York, 2011.  Google Scholar

[11]

H. Brezis and T. Cazenave, Unpublished, Book., ().   Google Scholar

[12]

Adv. Differential Equations, 1 (1996), 73-90.  Google Scholar

[13]

J. Differential Equations, 236 (2007), 407-459. doi: 10.1016/j.jde.2007.02.004.  Google Scholar

[14]

J. Differential Equations, 203 (2004), 119-158. doi: 10.1016/j.jde.2004.04.011.  Google Scholar

[15]

Comm. Partial Differential Equations, 27 (2002), 1901-1951. doi: 10.1081/PDE-120016132.  Google Scholar

[16]

McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.  Google Scholar

[17]

Japan J. Indust. Appl. Math., 9 (1992), 181-203. doi: 10.1007/BF03167565.  Google Scholar

[18]

Comput. Math. Appl., 60 (2010), 670-679. doi: 10.1016/j.camwa.2010.05.015.  Google Scholar

[19]

Math. Ann., 284 (1989), 285-305. doi: 10.1007/BF01442877.  Google Scholar

[20]

Comm. Partial Differential Equations, 18 (1993), 1309-1364. doi: 10.1080/03605309308820976.  Google Scholar

[21]

Differential Integral Equations, 8 (1995), 247-267.  Google Scholar

[22]

Nonlinear Anal., 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005.  Google Scholar

[23]

Discrete Contin. Dyn. Syst., 8 (2002), 399-433, Current Developments in Partial Differential Equations (Temuco, 1999). doi: 10.3934/dcds.2002.8.399.  Google Scholar

[24]

J. Differential Equations, 109 (1994), 295-308. doi: 10.1006/jdeq.1994.1051.  Google Scholar

[25]

Adv. Differential Equations, 13 (2008), 1051-1074.  Google Scholar

[26]

J. Math. Anal. Appl., 333 (2007), 839-862. doi: 10.1016/j.jmaa.2006.11.050.  Google Scholar

[27]

Proc. Roy. Soc. Edinburgh Sect. A, 105 (1987), 101-115. doi: 10.1017/S0308210500021946.  Google Scholar

[28]

Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 43-60. doi: 10.1017/S0308210500023945.  Google Scholar

[29]

J. Differential Equations, 212 (2005), 114-128. doi: 10.1016/j.jde.2004.10.021.  Google Scholar

[30]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 215-218. doi: 10.1016/j.anihpc.2006.12.002.  Google Scholar

[31]

Hokkaido Math. J., 21 (1992), 221-229.  Google Scholar

[32]

J. Differential Equations, 75 (1988), 53-87. doi: 10.1016/0022-0396(88)90129-5.  Google Scholar

[33]

Arch. Rational Mech. Anal., 51 (1973), 371-386.  Google Scholar

[34]

SIAM Rev., 32 (1990), 262-288. doi: 10.1137/1032046.  Google Scholar

[35]

J. Differential Equations, 142 (1998), 212-229. doi: 10.1006/jdeq.1997.3362.  Google Scholar

[36]

J. Differential Equations, 16 (1974), 319-334. doi: 10.1016/0022-0396(74)90018-7.  Google Scholar

[37]

Proc. Amer. Math. Soc. 46 (1974), 277-284.  Google Scholar

[38]

Arch. Rational Mech. Anal., 137 (1997), 341-361. doi: 10.1007/s002050050032.  Google Scholar

[39]

Math. Methods Appl. Sci., 9 (1987), 127-136. doi: 10.1002/mma.1670090111.  Google Scholar

[40]

J. Reine Angew. Math., 374 (1987), 1-23.  Google Scholar

[41]

Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968.  Google Scholar

[42]

Bull. Soc. Math. France, 93 (1965), 43-96.  Google Scholar

[43]

Progress in Nonlinear Differential Equations and Their Applications, 16, Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[44]

Nonlinear Anal., 50 (2002), Ser. A: Theory Methods, 223-250. doi: 10.1016/S0362-546X(01)00748-9.  Google Scholar

[45]

Arch. Rational Mech. Anal., 45 (1972), 294-320.  Google Scholar

[46]

J. Differential Equations, 193 (2003), 212-238. doi: 10.1016/S0022-0396(03)00128-1.  Google Scholar

[47]

Appl. Anal., 87 (2008), 699-707. doi: 10.1080/00036810802189662.  Google Scholar

[48]

Int. J. Pure Appl. Math., 48 (2008), 193-202.  Google Scholar

[49]

J. Math. Anal. Appl., 354 (2009), 394-396. doi: 10.1016/j.jmaa.2009.01.010.  Google Scholar

[50]

J. Differential Equations, 150 (1998), 203-214. doi: 10.1006/jdeq.1998.3477.  Google Scholar

[51]

Discrete Contin. Dyn. Syst., 18 (2007), 15-38. doi: 10.3934/dcds.2007.18.15.  Google Scholar

[52]

Differential Integral Equations, 16 (2003), 13-50.  Google Scholar

[53]

Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[54]

Pacific J. Math., 19 (1966), 543-551. doi: 10.2140/pjm.1966.19.543.  Google Scholar

[55]

Applied Mathematical Sciences, 117, Springer-Verlag, New York, 1997, Nonlinear Equations, Corrected Reprint of the 1996 Original.  Google Scholar

[56]

Soviet Math. Dokl., 1 (1960), 132-133.  Google Scholar

[57]

Arch. Rational Mech. Anal., 149 (1999), 155-182. doi: 10.1007/s002050050171.  Google Scholar

[58]

Rend. Istit. Mat. Univ. Trieste, 31 (2000), 245-275, Workshop on Blow-up and Global Existence of Solutions for Parabolic and Hyperbolic Problems (Trieste, 1999).  Google Scholar

[59]

J. Differential Equations, 186 (2002), 259-298. doi: 10.1016/S0022-0396(02)00023-2.  Google Scholar

[60]

Glasg. Math. J., 44 (2002), 375-395. doi: 10.1017/S0017089502030045.  Google Scholar

[61]

Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 1-33. doi: 10.1017/S0308210500003838.  Google Scholar

[62]

Proc. London Math. Soc. (3), 93 (2006), 418-446. doi: 10.1112/S0024611506015875.  Google Scholar

[63]

Comm. Partial Differential Equations, 28 (2003), 223-247. doi: 10.1081/PDE-120019380.  Google Scholar

[64]

Discrete Contin. Dyn. Syst., 2007, Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference, suppl., 1031-1041.  Google Scholar

[65]

Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989, Sobolev spaces and functions of bounded variation. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975, Pure and Applied Mathematics, 65, 1975.  Google Scholar

[2]

J. Differential Equations, 72 (1988), 201-269. doi: 10.1016/0022-0396(88)90156-8.  Google Scholar

[3]

C. R. Acad. Sci. Paris, 256 (1963), 5042-5044.  Google Scholar

[4]

Nonlinear Anal., 73 (2010), 1952-1965. doi: 10.1016/j.na.2010.05.024.  Google Scholar

[5]

Commun. Pure Appl. Anal., 9 (2010), 1161-1188. doi: 10.3934/cpaa.2010.9.1161.  Google Scholar

[6]

Arch. Ration. Mech. Anal., 196 (2010), 489-516. doi: 10.1007/s00205-009-0241-x.  Google Scholar

[7]

I. Bejenaru, J. I. Díaz and I. I. Vrabie, An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions,, Electron. J. Differential Equations, 2001 ().   Google Scholar

[8]

Discrete Contin. Dyn. Syst., 22 (2008), 835-860. doi: 10.3934/dcds.2008.22.835.  Google Scholar

[9]

J. Differential Equations, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[10]

Universitext, Springer, New York, 2011.  Google Scholar

[11]

H. Brezis and T. Cazenave, Unpublished, Book., ().   Google Scholar

[12]

Adv. Differential Equations, 1 (1996), 73-90.  Google Scholar

[13]

J. Differential Equations, 236 (2007), 407-459. doi: 10.1016/j.jde.2007.02.004.  Google Scholar

[14]

J. Differential Equations, 203 (2004), 119-158. doi: 10.1016/j.jde.2004.04.011.  Google Scholar

[15]

Comm. Partial Differential Equations, 27 (2002), 1901-1951. doi: 10.1081/PDE-120016132.  Google Scholar

[16]

McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.  Google Scholar

[17]

Japan J. Indust. Appl. Math., 9 (1992), 181-203. doi: 10.1007/BF03167565.  Google Scholar

[18]

Comput. Math. Appl., 60 (2010), 670-679. doi: 10.1016/j.camwa.2010.05.015.  Google Scholar

[19]

Math. Ann., 284 (1989), 285-305. doi: 10.1007/BF01442877.  Google Scholar

[20]

Comm. Partial Differential Equations, 18 (1993), 1309-1364. doi: 10.1080/03605309308820976.  Google Scholar

[21]

Differential Integral Equations, 8 (1995), 247-267.  Google Scholar

[22]

Nonlinear Anal., 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005.  Google Scholar

[23]

Discrete Contin. Dyn. Syst., 8 (2002), 399-433, Current Developments in Partial Differential Equations (Temuco, 1999). doi: 10.3934/dcds.2002.8.399.  Google Scholar

[24]

J. Differential Equations, 109 (1994), 295-308. doi: 10.1006/jdeq.1994.1051.  Google Scholar

[25]

Adv. Differential Equations, 13 (2008), 1051-1074.  Google Scholar

[26]

J. Math. Anal. Appl., 333 (2007), 839-862. doi: 10.1016/j.jmaa.2006.11.050.  Google Scholar

[27]

Proc. Roy. Soc. Edinburgh Sect. A, 105 (1987), 101-115. doi: 10.1017/S0308210500021946.  Google Scholar

[28]

Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 43-60. doi: 10.1017/S0308210500023945.  Google Scholar

[29]

J. Differential Equations, 212 (2005), 114-128. doi: 10.1016/j.jde.2004.10.021.  Google Scholar

[30]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 215-218. doi: 10.1016/j.anihpc.2006.12.002.  Google Scholar

[31]

Hokkaido Math. J., 21 (1992), 221-229.  Google Scholar

[32]

J. Differential Equations, 75 (1988), 53-87. doi: 10.1016/0022-0396(88)90129-5.  Google Scholar

[33]

Arch. Rational Mech. Anal., 51 (1973), 371-386.  Google Scholar

[34]

SIAM Rev., 32 (1990), 262-288. doi: 10.1137/1032046.  Google Scholar

[35]

J. Differential Equations, 142 (1998), 212-229. doi: 10.1006/jdeq.1997.3362.  Google Scholar

[36]

J. Differential Equations, 16 (1974), 319-334. doi: 10.1016/0022-0396(74)90018-7.  Google Scholar

[37]

Proc. Amer. Math. Soc. 46 (1974), 277-284.  Google Scholar

[38]

Arch. Rational Mech. Anal., 137 (1997), 341-361. doi: 10.1007/s002050050032.  Google Scholar

[39]

Math. Methods Appl. Sci., 9 (1987), 127-136. doi: 10.1002/mma.1670090111.  Google Scholar

[40]

J. Reine Angew. Math., 374 (1987), 1-23.  Google Scholar

[41]

Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968.  Google Scholar

[42]

Bull. Soc. Math. France, 93 (1965), 43-96.  Google Scholar

[43]

Progress in Nonlinear Differential Equations and Their Applications, 16, Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[44]

Nonlinear Anal., 50 (2002), Ser. A: Theory Methods, 223-250. doi: 10.1016/S0362-546X(01)00748-9.  Google Scholar

[45]

Arch. Rational Mech. Anal., 45 (1972), 294-320.  Google Scholar

[46]

J. Differential Equations, 193 (2003), 212-238. doi: 10.1016/S0022-0396(03)00128-1.  Google Scholar

[47]

Appl. Anal., 87 (2008), 699-707. doi: 10.1080/00036810802189662.  Google Scholar

[48]

Int. J. Pure Appl. Math., 48 (2008), 193-202.  Google Scholar

[49]

J. Math. Anal. Appl., 354 (2009), 394-396. doi: 10.1016/j.jmaa.2009.01.010.  Google Scholar

[50]

J. Differential Equations, 150 (1998), 203-214. doi: 10.1006/jdeq.1998.3477.  Google Scholar

[51]

Discrete Contin. Dyn. Syst., 18 (2007), 15-38. doi: 10.3934/dcds.2007.18.15.  Google Scholar

[52]

Differential Integral Equations, 16 (2003), 13-50.  Google Scholar

[53]

Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[54]

Pacific J. Math., 19 (1966), 543-551. doi: 10.2140/pjm.1966.19.543.  Google Scholar

[55]

Applied Mathematical Sciences, 117, Springer-Verlag, New York, 1997, Nonlinear Equations, Corrected Reprint of the 1996 Original.  Google Scholar

[56]

Soviet Math. Dokl., 1 (1960), 132-133.  Google Scholar

[57]

Arch. Rational Mech. Anal., 149 (1999), 155-182. doi: 10.1007/s002050050171.  Google Scholar

[58]

Rend. Istit. Mat. Univ. Trieste, 31 (2000), 245-275, Workshop on Blow-up and Global Existence of Solutions for Parabolic and Hyperbolic Problems (Trieste, 1999).  Google Scholar

[59]

J. Differential Equations, 186 (2002), 259-298. doi: 10.1016/S0022-0396(02)00023-2.  Google Scholar

[60]

Glasg. Math. J., 44 (2002), 375-395. doi: 10.1017/S0017089502030045.  Google Scholar

[61]

Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 1-33. doi: 10.1017/S0308210500003838.  Google Scholar

[62]

Proc. London Math. Soc. (3), 93 (2006), 418-446. doi: 10.1112/S0024611506015875.  Google Scholar

[63]

Comm. Partial Differential Equations, 28 (2003), 223-247. doi: 10.1081/PDE-120019380.  Google Scholar

[64]

Discrete Contin. Dyn. Syst., 2007, Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference, suppl., 1031-1041.  Google Scholar

[65]

Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989, Sobolev spaces and functions of bounded variation. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[2]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[3]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[4]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[5]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[6]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[7]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[8]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[9]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[10]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[11]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[12]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[13]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[14]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[15]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[16]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[17]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[18]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[19]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[20]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]