November  2013, 33(11&12): 5049-5058. doi: 10.3934/dcds.2013.33.5049

On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces

1. 

Università degli Studi di Pavia, Dipartimento di Matematica “F. Casorati”, via Ferrata 1, 27100 Pavia

2. 

Dipartimento di Ingegneria dell'Informazione, Ingegneria Elletrica e Matematica Applicata, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (Sa)

Received  November 2011 Published  May 2013

In this paper we give sufficient conditions ensuring that the space of test functions $C_c^{\infty}(R^N)$ is a core for the operator $$L_0u=\Delta u-Mx\cdot \nabla u+\frac{\alpha}{|x|^2}u=:Lu+\frac{\alpha}{|x|^2}u,$$ and $L_0$ with domain $W_\mu^{2,p}(R^N)$ generates a quasi-contractive and positivity preserving $C_0$-semigroup in $L^p_\mu(R^N),\,1 < p < \infty$. Here $M$ is a positive definite $N\times N$ hermitian matrix and $\mu$ is the unique invariant measure for the Ornstein-Uhlenbeck operator $L$. The proofs are based on an $L^p$-weighted Hardy's inequality and perturbation techniques.
Citation: Simona Fornaro, Abdelaziz Rhandi. On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5049-5058. doi: 10.3934/dcds.2013.33.5049
References:
[1]

M. Bertoldi and L. Lorenzi, "Analytical Methods for Markov Semigroups,", Chapman Hall/CRC, (2007). Google Scholar

[2]

T. Durante and A. Rhandi, On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials,, Discrete Cont. Dyn. Syst. S., 6 (2013), 649. doi: doi:10.3934/dcdss.2013.6.649. Google Scholar

[3]

D. E. Edmunds and W. E. Evans, "Spectral Theory and Differential Operators,", Clarendon Press, (1987). Google Scholar

[4]

K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Springer-Verlag, (2000). Google Scholar

[5]

G. R. Goldstein, J. A. Goldstein and A. Rhandi, Kolmogorov equation perturbed by an inverse-square potential,, Discrete Cont. Dyn. Syst. S., 4 (2011), 623. doi: 10.3934/dcdss.2011.4.623. Google Scholar

[6]

G. R. Goldstein, J. A. Goldstein and A. Rhandi, Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential,, Applicable Analysis, 91 (2012), 2057. doi: 10.1080/00036811.2011.587809. Google Scholar

[7]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983). Google Scholar

[8]

G. Metafune, J. Prüss, A. Rhandi and R. Schnaubelt, The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), I (2002), 471. Google Scholar

[9]

R. Nagel, "One-Parameter Semigroups of Positive Operators,", Lecture Notes in Math., 1184 (1986). Google Scholar

[10]

N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces,, J. Math. Soc. Japan, 34 (1982), 677. doi: 10.2969/jmsj/03440677. Google Scholar

[11]

N. Okazawa, $L^p$-theory of Schrödinger operators with strongly singular potentials,, Japan. J. Math., 22 (1996), 199. Google Scholar

[12]

E. M. Ouhabaz, "Analysis of Heat Equations on Domains,", London Math. Soc. Monographs, 31 (2004). Google Scholar

[13]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness,", Academic Press, (1975). Google Scholar

[14]

B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials,, Arch. Rational Mech. Anal., 52 (1973), 44. Google Scholar

[15]

J. Walter, Note on a paper by Stetkœr-Hansen concerning essential self-adjointness of Schrödinger operators,, Math. Scand., 25 (1969), 94. Google Scholar

show all references

References:
[1]

M. Bertoldi and L. Lorenzi, "Analytical Methods for Markov Semigroups,", Chapman Hall/CRC, (2007). Google Scholar

[2]

T. Durante and A. Rhandi, On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials,, Discrete Cont. Dyn. Syst. S., 6 (2013), 649. doi: doi:10.3934/dcdss.2013.6.649. Google Scholar

[3]

D. E. Edmunds and W. E. Evans, "Spectral Theory and Differential Operators,", Clarendon Press, (1987). Google Scholar

[4]

K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Springer-Verlag, (2000). Google Scholar

[5]

G. R. Goldstein, J. A. Goldstein and A. Rhandi, Kolmogorov equation perturbed by an inverse-square potential,, Discrete Cont. Dyn. Syst. S., 4 (2011), 623. doi: 10.3934/dcdss.2011.4.623. Google Scholar

[6]

G. R. Goldstein, J. A. Goldstein and A. Rhandi, Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential,, Applicable Analysis, 91 (2012), 2057. doi: 10.1080/00036811.2011.587809. Google Scholar

[7]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983). Google Scholar

[8]

G. Metafune, J. Prüss, A. Rhandi and R. Schnaubelt, The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), I (2002), 471. Google Scholar

[9]

R. Nagel, "One-Parameter Semigroups of Positive Operators,", Lecture Notes in Math., 1184 (1986). Google Scholar

[10]

N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces,, J. Math. Soc. Japan, 34 (1982), 677. doi: 10.2969/jmsj/03440677. Google Scholar

[11]

N. Okazawa, $L^p$-theory of Schrödinger operators with strongly singular potentials,, Japan. J. Math., 22 (1996), 199. Google Scholar

[12]

E. M. Ouhabaz, "Analysis of Heat Equations on Domains,", London Math. Soc. Monographs, 31 (2004). Google Scholar

[13]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness,", Academic Press, (1975). Google Scholar

[14]

B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials,, Arch. Rational Mech. Anal., 52 (1973), 44. Google Scholar

[15]

J. Walter, Note on a paper by Stetkœr-Hansen concerning essential self-adjointness of Schrödinger operators,, Math. Scand., 25 (1969), 94. Google Scholar

[1]

Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451

[2]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[3]

Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649

[4]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[5]

Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871

[6]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[7]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[8]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[9]

Giuseppe Da Prato. Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 637-647. doi: 10.3934/dcdss.2013.6.637

[10]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[11]

Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577

[12]

Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142

[13]

Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651

[14]

Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic & Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013

[15]

José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195

[16]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[17]

Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 285-302. doi: 10.3934/mbe.2014.11.285

[18]

Antonio Avantaggiati, Paola Loreti. Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators (II). Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 525-545. doi: 10.3934/dcdss.2009.2.525

[19]

Shingo Takeuchi. Partial flat core properties associated to the $p$-laplace operator. Conference Publications, 2007, 2007 (Special) : 965-973. doi: 10.3934/proc.2007.2007.965

[20]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]