\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces

Abstract / Introduction Related Papers Cited by
  • In this paper we give sufficient conditions ensuring that the space of test functions $C_c^{\infty}(R^N)$ is a core for the operator $$L_0u=\Delta u-Mx\cdot \nabla u+\frac{\alpha}{|x|^2}u=:Lu+\frac{\alpha}{|x|^2}u,$$ and $L_0$ with domain $W_\mu^{2,p}(R^N)$ generates a quasi-contractive and positivity preserving $C_0$-semigroup in $L^p_\mu(R^N),\,1 < p < \infty$. Here $M$ is a positive definite $N\times N$ hermitian matrix and $\mu$ is the unique invariant measure for the Ornstein-Uhlenbeck operator $L$. The proofs are based on an $L^p$-weighted Hardy's inequality and perturbation techniques.
    Mathematics Subject Classification: Primary: 47D06, 35R05, 35B25; Secondary: 35K15, 35K65, 34G10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bertoldi and L. Lorenzi, "Analytical Methods for Markov Semigroups," Chapman Hall/CRC, Boca Raton FL, 2007.

    [2]

    T. Durante and A. Rhandi, On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials, Discrete Cont. Dyn. Syst. S., 6 (2013), 649-655.doi: doi:10.3934/dcdss.2013.6.649.

    [3]

    D. E. Edmunds and W. E. Evans, "Spectral Theory and Differential Operators," Clarendon Press, Oxford, 1987.

    [4]

    K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Springer-Verlag, New York, 2000.

    [5]

    G. R. Goldstein, J. A. Goldstein and A. Rhandi, Kolmogorov equation perturbed by an inverse-square potential, Discrete Cont. Dyn. Syst. S., 4 (2011), 623-630.doi: 10.3934/dcdss.2011.4.623.

    [6]

    G. R. Goldstein, J. A. Goldstein and A. Rhandi, Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential, Applicable Analysis, 91 (2012), 2057-2071.doi: 10.1080/00036811.2011.587809.

    [7]

    D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, 1983.

    [8]

    G. Metafune, J. Prüss, A. Rhandi and R. Schnaubelt, The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), I (2002), 471-485.

    [9]

    R. Nagel, "One-Parameter Semigroups of Positive Operators," Lecture Notes in Math., 1184, Springer-Verlag, 1986.

    [10]

    N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Japan, 34 (1982), 677-701.doi: 10.2969/jmsj/03440677.

    [11]

    N. Okazawa, $L^p$-theory of Schrödinger operators with strongly singular potentials, Japan. J. Math., 22 (1996), 199-239.

    [12]

    E. M. Ouhabaz, "Analysis of Heat Equations on Domains," London Math. Soc. Monographs, 31. Princeton Univ. Press 2004.

    [13]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness," Academic Press, New York, 1975.

    [14]

    B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials, Arch. Rational Mech. Anal., 52 (1973), 44-48.

    [15]

    J. Walter, Note on a paper by Stetkœr-Hansen concerning essential self-adjointness of Schrödinger operators, Math. Scand., 25 (1969), 94-96.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return