November  2013, 33(11&12): 5059-5066. doi: 10.3934/dcds.2013.33.5059

Prey-predator models with infected prey and predators

1. 

Mathematical Sciences Institute, Australian National University, Canberra ACT 0200, Australia

2. 

Department of Mathematics and Statistics, California State Polytechnic University, Pomona, Pomona, CA 91768, United States

Received  February 2012 Revised  March 2012 Published  May 2013

Some deterministic models for prey and predators are considered, when both may become infected, the infection of the prey being either of the SIS or SIR type. We also study a simplified model for surviving predators.
Citation: J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059
References:
[1]

N. Bairagi and J. Chattopadhyay, The evolution on eco-epidemiological systems, theory and evidence,, J. Physics: Conference Series, 26 (2008). doi: 10.1088/1742-6596/96/1/012205. Google Scholar

[2]

H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey,, Theor. Pop. Biology, 66 (2004), 258. doi: 10.1016/j.tpb.2004.06.010. Google Scholar

[3]

Y-H. Hsieh and C. K. Hsiao, Predator-prey model with disease infection in both populations,, Math. Med. Biology, 25 (2008), 247. doi: 10.1093/imammb/dqn017. Google Scholar

[4]

D. G. Kendall, On the generalized "birth-and-death" process,, Ann. Math. Statist, 19 (1948), 1. doi: 10.1214/aoms/1177730285. Google Scholar

[5]

X. Zhou, X. Shi and X. Song, Analysis of a delay prey-predator model with disease in the prey species only,, J. Korean Math. Soc, 46 (2009), 713. doi: 10.4134/JKMS.2009.46.4.713. Google Scholar

show all references

References:
[1]

N. Bairagi and J. Chattopadhyay, The evolution on eco-epidemiological systems, theory and evidence,, J. Physics: Conference Series, 26 (2008). doi: 10.1088/1742-6596/96/1/012205. Google Scholar

[2]

H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey,, Theor. Pop. Biology, 66 (2004), 258. doi: 10.1016/j.tpb.2004.06.010. Google Scholar

[3]

Y-H. Hsieh and C. K. Hsiao, Predator-prey model with disease infection in both populations,, Math. Med. Biology, 25 (2008), 247. doi: 10.1093/imammb/dqn017. Google Scholar

[4]

D. G. Kendall, On the generalized "birth-and-death" process,, Ann. Math. Statist, 19 (1948), 1. doi: 10.1214/aoms/1177730285. Google Scholar

[5]

X. Zhou, X. Shi and X. Song, Analysis of a delay prey-predator model with disease in the prey species only,, J. Korean Math. Soc, 46 (2009), 713. doi: 10.4134/JKMS.2009.46.4.713. Google Scholar

[1]

Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289

[2]

Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693

[3]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[4]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1483-1508. doi: 10.3934/cpaa.2019071

[5]

Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303

[6]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[7]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[8]

Henri Berestycki, Alessandro Zilio. Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7141-7162. doi: 10.3934/dcds.2019299

[9]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167

[10]

Changrong Zhu, Lei Kong. Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1187-1206. doi: 10.3934/dcdss.2017065

[11]

Seong Lee, Inkyung Ahn. Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses. Communications on Pure & Applied Analysis, 2017, 16 (2) : 427-442. doi: 10.3934/cpaa.2017022

[12]

Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure & Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005

[13]

Laurent Denis, Anis Matoussi, Jing Zhang. The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5185-5202. doi: 10.3934/dcds.2015.35.5185

[14]

Demetris Hadjiloucas. Stochastic matrix-valued cocycles and non-homogeneous Markov chains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 731-738. doi: 10.3934/dcds.2007.17.731

[15]

Hilla Behar, Alexandra Agranovich, Yoram Louzoun. Diffusion rate determines balance between extinction and proliferation in birth-death processes. Mathematical Biosciences & Engineering, 2013, 10 (3) : 523-550. doi: 10.3934/mbe.2013.10.523

[16]

P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks. Mathematical Biosciences & Engineering, 2007, 4 (3) : 373-402. doi: 10.3934/mbe.2007.4.373

[17]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[18]

Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082

[19]

Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 285-302. doi: 10.3934/mbe.2014.11.285

[20]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]