November  2013, 33(11&12): 5059-5066. doi: 10.3934/dcds.2013.33.5059

Prey-predator models with infected prey and predators

1. 

Mathematical Sciences Institute, Australian National University, Canberra ACT 0200, Australia

2. 

Department of Mathematics and Statistics, California State Polytechnic University, Pomona, Pomona, CA 91768, United States

Received  February 2012 Revised  March 2012 Published  May 2013

Some deterministic models for prey and predators are considered, when both may become infected, the infection of the prey being either of the SIS or SIR type. We also study a simplified model for surviving predators.
Citation: J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059
References:
[1]

N. Bairagi and J. Chattopadhyay, The evolution on eco-epidemiological systems, theory and evidence,, J. Physics: Conference Series, 26 (2008).  doi: 10.1088/1742-6596/96/1/012205.  Google Scholar

[2]

H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey,, Theor. Pop. Biology, 66 (2004), 258.  doi: 10.1016/j.tpb.2004.06.010.  Google Scholar

[3]

Y-H. Hsieh and C. K. Hsiao, Predator-prey model with disease infection in both populations,, Math. Med. Biology, 25 (2008), 247.  doi: 10.1093/imammb/dqn017.  Google Scholar

[4]

D. G. Kendall, On the generalized "birth-and-death" process,, Ann. Math. Statist, 19 (1948), 1.  doi: 10.1214/aoms/1177730285.  Google Scholar

[5]

X. Zhou, X. Shi and X. Song, Analysis of a delay prey-predator model with disease in the prey species only,, J. Korean Math. Soc, 46 (2009), 713.  doi: 10.4134/JKMS.2009.46.4.713.  Google Scholar

show all references

References:
[1]

N. Bairagi and J. Chattopadhyay, The evolution on eco-epidemiological systems, theory and evidence,, J. Physics: Conference Series, 26 (2008).  doi: 10.1088/1742-6596/96/1/012205.  Google Scholar

[2]

H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey,, Theor. Pop. Biology, 66 (2004), 258.  doi: 10.1016/j.tpb.2004.06.010.  Google Scholar

[3]

Y-H. Hsieh and C. K. Hsiao, Predator-prey model with disease infection in both populations,, Math. Med. Biology, 25 (2008), 247.  doi: 10.1093/imammb/dqn017.  Google Scholar

[4]

D. G. Kendall, On the generalized "birth-and-death" process,, Ann. Math. Statist, 19 (1948), 1.  doi: 10.1214/aoms/1177730285.  Google Scholar

[5]

X. Zhou, X. Shi and X. Song, Analysis of a delay prey-predator model with disease in the prey species only,, J. Korean Math. Soc, 46 (2009), 713.  doi: 10.4134/JKMS.2009.46.4.713.  Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[3]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[4]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[7]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[8]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[9]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[12]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[13]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[14]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[15]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[16]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[17]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[18]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]