-
Previous Article
Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions
- DCDS Home
- This Issue
-
Next Article
On a class of model Hilbert spaces
Nonlocal phase-field systems with general potentials
1. | Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9, I-20133 Milano |
2. | Dipartimento di Matematica, Università di Pavia, Via Ferrata, 1, I-27100 Pavia |
References:
[1] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113. |
[2] |
S. Armstrong, S. Brown and J. Han, Numerical analysis for a nonlocal phase field system, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), 1-19. |
[3] |
H. Attouch, "Variational Convergence for Functions and Operators," Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[4] |
P. W. Bates and F. Chen, Traveling wave solutions for a nonlocal phase-field system, Interfaces Free Bound., 4 (2002), 227-238.
doi: 10.4171/IFB/59. |
[5] |
P. W. Bates, F. Chen and J. Wang, Global existence and uniqueness of solutions to a nonlocal phase-field system, in "US-Chinese Conference on Differential Equations and Applications" (Eds. P. W. Bates, S.-N. Chow, K. Lu and X. Pan), International Press, Cambridge, MA, (1997), 14-21. |
[6] |
P. W. Bates and J. Han, The Dirichlet problem for a nonlocal Cahn-Hilliard equation, J. Math. Anal. Appl., 311 (2005), 289-312.
doi: 10.1016/j.jmaa.2005.02.041. |
[7] |
P. W. Bates, J. Han and G. Zhao, On a nonlocal phase-field system, Nonlinear Anal., 64 (2006), 2251-2278.
doi: 10.1016/j.na.2005.08.013. |
[8] |
H. Brezis, "Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert," North-Holland Math. Studies, 5, North-Holland, Amsterdam, 1973. |
[9] |
M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions," Springer, New York, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[10] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.
doi: 10.1007/BF00254827. |
[11] |
G. Caginalp, The role of microscopic anisotropy in the macroscopic behavior of a phase boundary, Ann. Phys., 172 (1986), 136-155.
doi: 10.1016/0003-4916(86)90022-9. |
[12] |
G. Caginalp and E. Esenturk, A phase field model with non-local and anisotropic potential, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 311-350.
doi: 10.3934/dcdss.2011.4.311. |
[13] |
X. Chen, G. Caginalp and E. Esenturk, A phase field model with non-local and anisotropic potential, Modelling Simul. Mater. Sci. Eng., 19 (2011), 8, 045006.
doi: 10.1088/0965-0393/19/4/045006. |
[14] |
X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions, Arch. Rational Mech. Anal., 202 (2011), 349-372.
doi: 10.1007/s00205-011-0429-8. |
[15] |
C. M. Elliott and S. Zheng, Global existence and stability of solutions to the phase-field equations, in "Free boundary problems," Internat. Ser. Numer. Math., 95 46-58, Birkhäuser Verlag, Basel, (1990). |
[16] |
E. Feireisl, F. Issard-Roch and H. Petzeltová, A non-smooth version of the Łojasiewicz-Simon theorem with applications to non-local phase-field systems, J. Differential Equations, 199 (2004), 1-21.
doi: 10.1016/j.jde.2003.10.026. |
[17] |
M. Grasselli, Finite-dimensional global attractor for a nonlocal phase-field system, preprint, arXiv:1108.0314, Istit. Lombardo Accad. Sci. Lett. Rend. A, to appear. |
[18] |
M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.
doi: 10.3934/dcds.2010.28.67. |
[19] |
M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.
doi: 10.4171/ZAA/1277. |
[20] |
M. Grasselli, H. Petzeltová and G. Schimperna, A nonlocal phase-field system with inertial term, Quart. Appl. Math., 65 (2007), 451-469. |
[21] |
J. K. Hale, "Asymptotic Behaviour of Dissipative Systems," Amer. Math. Soc., Providence, RI, 1988. |
[22] |
N. J. Koksch and A. J. Milani, "An Introduction to Semiflows," Chapman & Hall/CRC, Boca Raton, FL, 2005. |
[23] |
P. Krejčí and J. Sprekels, Nonlocal phase-field models for non-isothermal phase transitions and hysteresis, Adv. Math. Sci. Appl., 14 (2004), 593-612. |
[24] |
P. Krejčí and J. Sprekels, Long time behavior of a singular phase transition model, Discrete Contin. Dyn. Syst., 15 (2006), 1119-1135.
doi: 10.3934/dcds.2006.15.1119. |
[25] |
P. Krejčí, E. Rocca and J. Sprekels, Nonlocal temperature-dependent phase-field models for non-isothermal phase transitions, J. Lond. Math. Soc. (2), 76 (2007), 197-210.
doi: 10.1112/jlms/jdm032. |
[26] |
P. Krejčí, E. Rocca and J. Sprekels, A nonlocal phase-field model with nonconstant specific heat, Interfaces Free Bound., 9 (2007), 285-306.
doi: 10.4171/IFB/165. |
[27] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralts'eva, "Linear and Quasilinear Equations of Parabolic Type," (Russian). Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 23 American Mathematical Society, Providence, R.I., 1967. |
[28] |
V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486.
doi: 10.3934/cpaa.2007.6.481. |
[29] |
E. Rocca and G. Schimperna, Universal attractor for some singular phase transition systems, Phys. D, 192 (2004), 279-307.
doi: 10.1016/j.physd.2004.01.024. |
[30] |
G. Schimperna, A. Segatti and S. Zelik, Asymptotic uniform boundedness of energy solutions to the Penrose-Fife model, J. Evol. Equ., 12 (2012), 863-890.
doi: 10.1007/s00028-012-0159-x. |
[31] |
J. Sprekels and S. Zheng, Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions, J. Math. Anal. Appl., 279 (2003), 97-110.
doi: 10.1016/S0022-247X(02)00559-0. |
show all references
References:
[1] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113. |
[2] |
S. Armstrong, S. Brown and J. Han, Numerical analysis for a nonlocal phase field system, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), 1-19. |
[3] |
H. Attouch, "Variational Convergence for Functions and Operators," Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[4] |
P. W. Bates and F. Chen, Traveling wave solutions for a nonlocal phase-field system, Interfaces Free Bound., 4 (2002), 227-238.
doi: 10.4171/IFB/59. |
[5] |
P. W. Bates, F. Chen and J. Wang, Global existence and uniqueness of solutions to a nonlocal phase-field system, in "US-Chinese Conference on Differential Equations and Applications" (Eds. P. W. Bates, S.-N. Chow, K. Lu and X. Pan), International Press, Cambridge, MA, (1997), 14-21. |
[6] |
P. W. Bates and J. Han, The Dirichlet problem for a nonlocal Cahn-Hilliard equation, J. Math. Anal. Appl., 311 (2005), 289-312.
doi: 10.1016/j.jmaa.2005.02.041. |
[7] |
P. W. Bates, J. Han and G. Zhao, On a nonlocal phase-field system, Nonlinear Anal., 64 (2006), 2251-2278.
doi: 10.1016/j.na.2005.08.013. |
[8] |
H. Brezis, "Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert," North-Holland Math. Studies, 5, North-Holland, Amsterdam, 1973. |
[9] |
M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions," Springer, New York, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[10] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.
doi: 10.1007/BF00254827. |
[11] |
G. Caginalp, The role of microscopic anisotropy in the macroscopic behavior of a phase boundary, Ann. Phys., 172 (1986), 136-155.
doi: 10.1016/0003-4916(86)90022-9. |
[12] |
G. Caginalp and E. Esenturk, A phase field model with non-local and anisotropic potential, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 311-350.
doi: 10.3934/dcdss.2011.4.311. |
[13] |
X. Chen, G. Caginalp and E. Esenturk, A phase field model with non-local and anisotropic potential, Modelling Simul. Mater. Sci. Eng., 19 (2011), 8, 045006.
doi: 10.1088/0965-0393/19/4/045006. |
[14] |
X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions, Arch. Rational Mech. Anal., 202 (2011), 349-372.
doi: 10.1007/s00205-011-0429-8. |
[15] |
C. M. Elliott and S. Zheng, Global existence and stability of solutions to the phase-field equations, in "Free boundary problems," Internat. Ser. Numer. Math., 95 46-58, Birkhäuser Verlag, Basel, (1990). |
[16] |
E. Feireisl, F. Issard-Roch and H. Petzeltová, A non-smooth version of the Łojasiewicz-Simon theorem with applications to non-local phase-field systems, J. Differential Equations, 199 (2004), 1-21.
doi: 10.1016/j.jde.2003.10.026. |
[17] |
M. Grasselli, Finite-dimensional global attractor for a nonlocal phase-field system, preprint, arXiv:1108.0314, Istit. Lombardo Accad. Sci. Lett. Rend. A, to appear. |
[18] |
M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.
doi: 10.3934/dcds.2010.28.67. |
[19] |
M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.
doi: 10.4171/ZAA/1277. |
[20] |
M. Grasselli, H. Petzeltová and G. Schimperna, A nonlocal phase-field system with inertial term, Quart. Appl. Math., 65 (2007), 451-469. |
[21] |
J. K. Hale, "Asymptotic Behaviour of Dissipative Systems," Amer. Math. Soc., Providence, RI, 1988. |
[22] |
N. J. Koksch and A. J. Milani, "An Introduction to Semiflows," Chapman & Hall/CRC, Boca Raton, FL, 2005. |
[23] |
P. Krejčí and J. Sprekels, Nonlocal phase-field models for non-isothermal phase transitions and hysteresis, Adv. Math. Sci. Appl., 14 (2004), 593-612. |
[24] |
P. Krejčí and J. Sprekels, Long time behavior of a singular phase transition model, Discrete Contin. Dyn. Syst., 15 (2006), 1119-1135.
doi: 10.3934/dcds.2006.15.1119. |
[25] |
P. Krejčí, E. Rocca and J. Sprekels, Nonlocal temperature-dependent phase-field models for non-isothermal phase transitions, J. Lond. Math. Soc. (2), 76 (2007), 197-210.
doi: 10.1112/jlms/jdm032. |
[26] |
P. Krejčí, E. Rocca and J. Sprekels, A nonlocal phase-field model with nonconstant specific heat, Interfaces Free Bound., 9 (2007), 285-306.
doi: 10.4171/IFB/165. |
[27] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralts'eva, "Linear and Quasilinear Equations of Parabolic Type," (Russian). Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 23 American Mathematical Society, Providence, R.I., 1967. |
[28] |
V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486.
doi: 10.3934/cpaa.2007.6.481. |
[29] |
E. Rocca and G. Schimperna, Universal attractor for some singular phase transition systems, Phys. D, 192 (2004), 279-307.
doi: 10.1016/j.physd.2004.01.024. |
[30] |
G. Schimperna, A. Segatti and S. Zelik, Asymptotic uniform boundedness of energy solutions to the Penrose-Fife model, J. Evol. Equ., 12 (2012), 863-890.
doi: 10.1007/s00028-012-0159-x. |
[31] |
J. Sprekels and S. Zheng, Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions, J. Math. Anal. Appl., 279 (2003), 97-110.
doi: 10.1016/S0022-247X(02)00559-0. |
[1] |
Hao Wu, Yuchen Yang. Well-posedness of a hydrodynamic phase-field system for functionalized membrane-fluid interaction. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2345-2389. doi: 10.3934/dcdss.2022102 |
[2] |
Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations and Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011 |
[3] |
Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure and Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317 |
[4] |
Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67 |
[5] |
Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657 |
[6] |
Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399 |
[7] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2039-2064. doi: 10.3934/cpaa.2021057 |
[8] |
Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure and Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367 |
[9] |
S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705 |
[10] |
Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539 |
[11] |
S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019 |
[12] |
Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693 |
[13] |
Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63 |
[14] |
Thomas Lorenz. Nonlocal hyperbolic population models structured by size and spatial position: Well-posedness. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4547-4628. doi: 10.3934/dcdsb.2019156 |
[15] |
Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531 |
[16] |
Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065 |
[17] |
Zhenduo Fan, Wenjun Liu, Shengqian Chen. Global well-posedness of the three-dimensional viscous primitive equations with bounded delays. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022019 |
[18] |
Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1 |
[19] |
Ahmad Makki, Alain Miranville, Georges Sadaka. On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1341-1365. doi: 10.3934/dcdsb.2019019 |
[20] |
Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]