November  2013, 33(11&12): 5089-5106. doi: 10.3934/dcds.2013.33.5089

Nonlocal phase-field systems with general potentials

1. 

Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9, I-20133 Milano

2. 

Dipartimento di Matematica, Università di Pavia, Via Ferrata, 1, I-27100 Pavia

Received  October 2011 Revised  July 2012 Published  May 2013

We consider a phase-field model of Caginalp type where the free energy depends on the order parameter $\chi$ in a nonlocal way. Therefore, the resulting system consists of the energy balance equation coupled with a nonlinear and nonlocal ODE for $\chi$. Such system has been analyzed by several authors, in particular when the configuration potential is a smooth double-well function. More recently, the first author has established the existence of a finite-dimensional global attractor in the case of a potential defined on $(-1,1)$ and singular at the endpoints. Here we examine both the case of regular potentials as well as the case of physically more relevant singular potentials (e.g., logarithmic). We prove well-posedness results and the eventual global boundedness of solutions uniformly with respect to the initial data. In addition, we show that the separation property holds in the case of singular potentials. Thanks to these results, we are able to demonstrate the existence of a finite-dimensional global attractor in the present cases as well.
Citation: Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.  doi: 10.1080/03605307908820113.  Google Scholar

[2]

S. Armstrong, S. Brown and J. Han, Numerical analysis for a nonlocal phase field system,, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), 1.   Google Scholar

[3]

H. Attouch, "Variational Convergence for Functions and Operators,", Applicable Mathematics Series. Pitman (Advanced Publishing Program), (1984).   Google Scholar

[4]

P. W. Bates and F. Chen, Traveling wave solutions for a nonlocal phase-field system,, Interfaces Free Bound., 4 (2002), 227.  doi: 10.4171/IFB/59.  Google Scholar

[5]

P. W. Bates, F. Chen and J. Wang, Global existence and uniqueness of solutions to a nonlocal phase-field system,, in, (1997), 14.   Google Scholar

[6]

P. W. Bates and J. Han, The Dirichlet problem for a nonlocal Cahn-Hilliard equation,, J. Math. Anal. Appl., 311 (2005), 289.  doi: 10.1016/j.jmaa.2005.02.041.  Google Scholar

[7]

P. W. Bates, J. Han and G. Zhao, On a nonlocal phase-field system,, Nonlinear Anal., 64 (2006), 2251.  doi: 10.1016/j.na.2005.08.013.  Google Scholar

[8]

H. Brezis, "Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert,", North-Holland Math. Studies, 5 (1973).   Google Scholar

[9]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Springer, (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[10]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[11]

G. Caginalp, The role of microscopic anisotropy in the macroscopic behavior of a phase boundary,, Ann. Phys., 172 (1986), 136.  doi: 10.1016/0003-4916(86)90022-9.  Google Scholar

[12]

G. Caginalp and E. Esenturk, A phase field model with non-local and anisotropic potential,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 311.  doi: 10.3934/dcdss.2011.4.311.  Google Scholar

[13]

X. Chen, G. Caginalp and E. Esenturk, A phase field model with non-local and anisotropic potential,, Modelling Simul. Mater. Sci. Eng., 19 (2011).  doi: 10.1088/0965-0393/19/4/045006.  Google Scholar

[14]

X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions,, Arch. Rational Mech. Anal., 202 (2011), 349.  doi: 10.1007/s00205-011-0429-8.  Google Scholar

[15]

C. M. Elliott and S. Zheng, Global existence and stability of solutions to the phase-field equations,, in, 95 (1990), 46.   Google Scholar

[16]

E. Feireisl, F. Issard-Roch and H. Petzeltová, A non-smooth version of the Łojasiewicz-Simon theorem with applications to non-local phase-field systems,, J. Differential Equations, 199 (2004), 1.  doi: 10.1016/j.jde.2003.10.026.  Google Scholar

[17]

M. Grasselli, Finite-dimensional global attractor for a nonlocal phase-field system,, preprint, ().   Google Scholar

[18]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials,, Discrete Contin. Dyn. Syst., 28 (2010), 67.  doi: 10.3934/dcds.2010.28.67.  Google Scholar

[19]

M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential,, Z. Anal. Anwend., 25 (2006), 51.  doi: 10.4171/ZAA/1277.  Google Scholar

[20]

M. Grasselli, H. Petzeltová and G. Schimperna, A nonlocal phase-field system with inertial term,, Quart. Appl. Math., 65 (2007), 451.   Google Scholar

[21]

J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).   Google Scholar

[22]

N. J. Koksch and A. J. Milani, "An Introduction to Semiflows,", Chapman & Hall/CRC, (2005).   Google Scholar

[23]

P. Krejčí and J. Sprekels, Nonlocal phase-field models for non-isothermal phase transitions and hysteresis,, Adv. Math. Sci. Appl., 14 (2004), 593.   Google Scholar

[24]

P. Krejčí and J. Sprekels, Long time behavior of a singular phase transition model,, Discrete Contin. Dyn. Syst., 15 (2006), 1119.  doi: 10.3934/dcds.2006.15.1119.  Google Scholar

[25]

P. Krejčí, E. Rocca and J. Sprekels, Nonlocal temperature-dependent phase-field models for non-isothermal phase transitions,, J. Lond. Math. Soc. (2), 76 (2007), 197.  doi: 10.1112/jlms/jdm032.  Google Scholar

[26]

P. Krejčí, E. Rocca and J. Sprekels, A nonlocal phase-field model with nonconstant specific heat,, Interfaces Free Bound., 9 (2007), 285.  doi: 10.4171/IFB/165.  Google Scholar

[27]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralts'eva, "Linear and Quasilinear Equations of Parabolic Type,", (Russian). Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 23 (1967).   Google Scholar

[28]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators,, Commun. Pure Appl. Anal., 6 (2007), 481.  doi: 10.3934/cpaa.2007.6.481.  Google Scholar

[29]

E. Rocca and G. Schimperna, Universal attractor for some singular phase transition systems,, Phys. D, 192 (2004), 279.  doi: 10.1016/j.physd.2004.01.024.  Google Scholar

[30]

G. Schimperna, A. Segatti and S. Zelik, Asymptotic uniform boundedness of energy solutions to the Penrose-Fife model,, J. Evol. Equ., 12 (2012), 863.  doi: 10.1007/s00028-012-0159-x.  Google Scholar

[31]

J. Sprekels and S. Zheng, Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions,, J. Math. Anal. Appl., 279 (2003), 97.  doi: 10.1016/S0022-247X(02)00559-0.  Google Scholar

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.  doi: 10.1080/03605307908820113.  Google Scholar

[2]

S. Armstrong, S. Brown and J. Han, Numerical analysis for a nonlocal phase field system,, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), 1.   Google Scholar

[3]

H. Attouch, "Variational Convergence for Functions and Operators,", Applicable Mathematics Series. Pitman (Advanced Publishing Program), (1984).   Google Scholar

[4]

P. W. Bates and F. Chen, Traveling wave solutions for a nonlocal phase-field system,, Interfaces Free Bound., 4 (2002), 227.  doi: 10.4171/IFB/59.  Google Scholar

[5]

P. W. Bates, F. Chen and J. Wang, Global existence and uniqueness of solutions to a nonlocal phase-field system,, in, (1997), 14.   Google Scholar

[6]

P. W. Bates and J. Han, The Dirichlet problem for a nonlocal Cahn-Hilliard equation,, J. Math. Anal. Appl., 311 (2005), 289.  doi: 10.1016/j.jmaa.2005.02.041.  Google Scholar

[7]

P. W. Bates, J. Han and G. Zhao, On a nonlocal phase-field system,, Nonlinear Anal., 64 (2006), 2251.  doi: 10.1016/j.na.2005.08.013.  Google Scholar

[8]

H. Brezis, "Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert,", North-Holland Math. Studies, 5 (1973).   Google Scholar

[9]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Springer, (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[10]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[11]

G. Caginalp, The role of microscopic anisotropy in the macroscopic behavior of a phase boundary,, Ann. Phys., 172 (1986), 136.  doi: 10.1016/0003-4916(86)90022-9.  Google Scholar

[12]

G. Caginalp and E. Esenturk, A phase field model with non-local and anisotropic potential,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 311.  doi: 10.3934/dcdss.2011.4.311.  Google Scholar

[13]

X. Chen, G. Caginalp and E. Esenturk, A phase field model with non-local and anisotropic potential,, Modelling Simul. Mater. Sci. Eng., 19 (2011).  doi: 10.1088/0965-0393/19/4/045006.  Google Scholar

[14]

X. Chen, G. Caginalp and E. Esenturk, Interface conditions for a phase field model with anisotropic and non-local interactions,, Arch. Rational Mech. Anal., 202 (2011), 349.  doi: 10.1007/s00205-011-0429-8.  Google Scholar

[15]

C. M. Elliott and S. Zheng, Global existence and stability of solutions to the phase-field equations,, in, 95 (1990), 46.   Google Scholar

[16]

E. Feireisl, F. Issard-Roch and H. Petzeltová, A non-smooth version of the Łojasiewicz-Simon theorem with applications to non-local phase-field systems,, J. Differential Equations, 199 (2004), 1.  doi: 10.1016/j.jde.2003.10.026.  Google Scholar

[17]

M. Grasselli, Finite-dimensional global attractor for a nonlocal phase-field system,, preprint, ().   Google Scholar

[18]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials,, Discrete Contin. Dyn. Syst., 28 (2010), 67.  doi: 10.3934/dcds.2010.28.67.  Google Scholar

[19]

M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential,, Z. Anal. Anwend., 25 (2006), 51.  doi: 10.4171/ZAA/1277.  Google Scholar

[20]

M. Grasselli, H. Petzeltová and G. Schimperna, A nonlocal phase-field system with inertial term,, Quart. Appl. Math., 65 (2007), 451.   Google Scholar

[21]

J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).   Google Scholar

[22]

N. J. Koksch and A. J. Milani, "An Introduction to Semiflows,", Chapman & Hall/CRC, (2005).   Google Scholar

[23]

P. Krejčí and J. Sprekels, Nonlocal phase-field models for non-isothermal phase transitions and hysteresis,, Adv. Math. Sci. Appl., 14 (2004), 593.   Google Scholar

[24]

P. Krejčí and J. Sprekels, Long time behavior of a singular phase transition model,, Discrete Contin. Dyn. Syst., 15 (2006), 1119.  doi: 10.3934/dcds.2006.15.1119.  Google Scholar

[25]

P. Krejčí, E. Rocca and J. Sprekels, Nonlocal temperature-dependent phase-field models for non-isothermal phase transitions,, J. Lond. Math. Soc. (2), 76 (2007), 197.  doi: 10.1112/jlms/jdm032.  Google Scholar

[26]

P. Krejčí, E. Rocca and J. Sprekels, A nonlocal phase-field model with nonconstant specific heat,, Interfaces Free Bound., 9 (2007), 285.  doi: 10.4171/IFB/165.  Google Scholar

[27]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralts'eva, "Linear and Quasilinear Equations of Parabolic Type,", (Russian). Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 23 (1967).   Google Scholar

[28]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators,, Commun. Pure Appl. Anal., 6 (2007), 481.  doi: 10.3934/cpaa.2007.6.481.  Google Scholar

[29]

E. Rocca and G. Schimperna, Universal attractor for some singular phase transition systems,, Phys. D, 192 (2004), 279.  doi: 10.1016/j.physd.2004.01.024.  Google Scholar

[30]

G. Schimperna, A. Segatti and S. Zelik, Asymptotic uniform boundedness of energy solutions to the Penrose-Fife model,, J. Evol. Equ., 12 (2012), 863.  doi: 10.1007/s00028-012-0159-x.  Google Scholar

[31]

J. Sprekels and S. Zheng, Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions,, J. Math. Anal. Appl., 279 (2003), 97.  doi: 10.1016/S0022-247X(02)00559-0.  Google Scholar

[1]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations & Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[2]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure & Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

[3]

Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67

[4]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[5]

Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399

[6]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[7]

S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705

[8]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[9]

S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019

[10]

Thomas Lorenz. Nonlocal hyperbolic population models structured by size and spatial position: Well-posedness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4547-4628. doi: 10.3934/dcdsb.2019156

[11]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

[12]

Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63

[13]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

[14]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[15]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[16]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[17]

Ahmad Makki, Alain Miranville, Georges Sadaka. On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1341-1365. doi: 10.3934/dcdsb.2019019

[18]

Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439

[19]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[20]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]