November  2013, 33(11&12): 5107-5141. doi: 10.3934/dcds.2013.33.5107

Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions

1. 

Dipartimento di Matematica, Piazza di Porta S. Donato, 5, 40126 Bologna

Received  October 2011 Revised  August 2012 Published  May 2013

We consider the problem of the reconstruction of the source term in a parabolic Cauchy-Dirichlet system in a cylindrical domain. The supplementary information, necessary to determine the unknown part of the source term together with the solution, is given by the knowledge of an integral of the solution with respect to some of the space variables.
Citation: Davide Guidetti. Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5107-5141. doi: 10.3934/dcds.2013.33.5107
References:
[1]

P. Acquistapace and B. Terreni, Hölder classes with boundary conditions as interpolation spaces,, Math. Z., 195 (1987), 451. doi: 10.1007/BF01166699. Google Scholar

[2]

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications,, Math. Nachr., 186 (1997), 5. doi: 10.1002/mana.3211860102. Google Scholar

[3]

H. Amann, Vector-Valued Distributions and Fourier Multipliers,, manuscript (2003), (2003). Google Scholar

[4]

Y. E. Anikonov and A. Lorenzi, Explicit representation for the solution to a parabolic differential identification problem in a Banach space,, J. Inv. Ill-Posed Problems, 15 (2007), 669. doi: 10.1515/jiip.2007.037. Google Scholar

[5]

Y. Y. Belov, "Inverse problems for Partial Differential Equations,", Inverse Ill-posed Probl. Ser., (2002). doi: 10.1515/9783110944631. Google Scholar

[6]

M. Di Cristo, D. Guidetti and A. Lorenzi, Abstract parabolic equations with applications to problems in cylindrical space domains,, Adv. Diff. Eq., 15 (2010), 1. Google Scholar

[7]

P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications,, J. Math. Pures et appl., 45 (1966), 143. Google Scholar

[8]

P. Grisvard, Spazi di tracce e applicazioni,, Rend. Mat., 6 (1972), 657. Google Scholar

[9]

D. Guidetti, On interpolation with boundary conditions,, Math. Z., 207 (1991), 439. doi: 10.1007/BF02571401. Google Scholar

[10]

D. Guidetti, The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are Hölder continuous with respect to space variables,, Rend. Mat. Acc. Lincei, 7 (1996), 161. Google Scholar

[11]

D. Guidetti, Partial reconstruction of the source term in a linear parabolic initial problem with first order boundary conditions,, to appear in Applicable Analysis (2013)., (2013). Google Scholar

[12]

D. Guidetti and S. Piskarev, On real interpolation, finite differences, and estimates depending on a parameter for discretizations of elliptic boundary value problems,, Abstr. Appl. Anal., 18 (2003), 1005. doi: 10.1155/S1085337503306359. Google Scholar

[13]

A. Hasanov, Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solutions approach,, J. Math. Anal. Appl., 330 (2007), 766. doi: 10.1016/j.jmaa.2006.08.018. Google Scholar

[14]

N. V. Krylov, "Lectures on Elliptic and Parabolic Equations in Hölder Spaces,", Graduate Studies in Mathematics vol. 12, (1996). Google Scholar

[15]

A. Lorenzi and A. I. Prilepko, Fredholm-type results for integrodifferential identification parabolic problems,, Differential Integral Equations, 6 (1993), 535. Google Scholar

[16]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems", Birkhäuser, (1995). doi: 10.1007/978-3-0348-9234-6. Google Scholar

[17]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, "Methods for Solving Inverse Problems in Mathematical Physics,", Marcel Dekker, (1999). Google Scholar

[18]

W. Rundell, Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data,, Applicable Anal., 10 (1980), 231. doi: 10.1080/00036818008839304. Google Scholar

[19]

L. Schwartz, "Mixed Problems in Partial Differential Equations and Representations of Semigroups,", Tata Institute of Fundamental Research, (1964). Google Scholar

[20]

B. Stewart, Generation of analytic semigroups by strongly elliptic operators,, Trans. Am. Math. Soc., 199 (1974), 141. doi: 10.1090/S0002-9947-1974-0358067-4. Google Scholar

[21]

H. Tanabe, "Equations of Evolution,", Pitman, (1979). Google Scholar

[22]

W. von Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Rumen hölderstetiger Funktionen,, Nachr. Akad. Wiss. Göttingen II, 11 (1972), 231. Google Scholar

show all references

References:
[1]

P. Acquistapace and B. Terreni, Hölder classes with boundary conditions as interpolation spaces,, Math. Z., 195 (1987), 451. doi: 10.1007/BF01166699. Google Scholar

[2]

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications,, Math. Nachr., 186 (1997), 5. doi: 10.1002/mana.3211860102. Google Scholar

[3]

H. Amann, Vector-Valued Distributions and Fourier Multipliers,, manuscript (2003), (2003). Google Scholar

[4]

Y. E. Anikonov and A. Lorenzi, Explicit representation for the solution to a parabolic differential identification problem in a Banach space,, J. Inv. Ill-Posed Problems, 15 (2007), 669. doi: 10.1515/jiip.2007.037. Google Scholar

[5]

Y. Y. Belov, "Inverse problems for Partial Differential Equations,", Inverse Ill-posed Probl. Ser., (2002). doi: 10.1515/9783110944631. Google Scholar

[6]

M. Di Cristo, D. Guidetti and A. Lorenzi, Abstract parabolic equations with applications to problems in cylindrical space domains,, Adv. Diff. Eq., 15 (2010), 1. Google Scholar

[7]

P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications,, J. Math. Pures et appl., 45 (1966), 143. Google Scholar

[8]

P. Grisvard, Spazi di tracce e applicazioni,, Rend. Mat., 6 (1972), 657. Google Scholar

[9]

D. Guidetti, On interpolation with boundary conditions,, Math. Z., 207 (1991), 439. doi: 10.1007/BF02571401. Google Scholar

[10]

D. Guidetti, The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are Hölder continuous with respect to space variables,, Rend. Mat. Acc. Lincei, 7 (1996), 161. Google Scholar

[11]

D. Guidetti, Partial reconstruction of the source term in a linear parabolic initial problem with first order boundary conditions,, to appear in Applicable Analysis (2013)., (2013). Google Scholar

[12]

D. Guidetti and S. Piskarev, On real interpolation, finite differences, and estimates depending on a parameter for discretizations of elliptic boundary value problems,, Abstr. Appl. Anal., 18 (2003), 1005. doi: 10.1155/S1085337503306359. Google Scholar

[13]

A. Hasanov, Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solutions approach,, J. Math. Anal. Appl., 330 (2007), 766. doi: 10.1016/j.jmaa.2006.08.018. Google Scholar

[14]

N. V. Krylov, "Lectures on Elliptic and Parabolic Equations in Hölder Spaces,", Graduate Studies in Mathematics vol. 12, (1996). Google Scholar

[15]

A. Lorenzi and A. I. Prilepko, Fredholm-type results for integrodifferential identification parabolic problems,, Differential Integral Equations, 6 (1993), 535. Google Scholar

[16]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems", Birkhäuser, (1995). doi: 10.1007/978-3-0348-9234-6. Google Scholar

[17]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, "Methods for Solving Inverse Problems in Mathematical Physics,", Marcel Dekker, (1999). Google Scholar

[18]

W. Rundell, Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data,, Applicable Anal., 10 (1980), 231. doi: 10.1080/00036818008839304. Google Scholar

[19]

L. Schwartz, "Mixed Problems in Partial Differential Equations and Representations of Semigroups,", Tata Institute of Fundamental Research, (1964). Google Scholar

[20]

B. Stewart, Generation of analytic semigroups by strongly elliptic operators,, Trans. Am. Math. Soc., 199 (1974), 141. doi: 10.1090/S0002-9947-1974-0358067-4. Google Scholar

[21]

H. Tanabe, "Equations of Evolution,", Pitman, (1979). Google Scholar

[22]

W. von Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Rumen hölderstetiger Funktionen,, Nachr. Akad. Wiss. Göttingen II, 11 (1972), 231. Google Scholar

[1]

M. Chipot, A. Rougirel. On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 319-338. doi: 10.3934/dcdsb.2001.1.319

[2]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems & Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

[3]

Hui-Ling Li, Heng-Ling Wang, Xiao-Liu Wang. A quasilinear parabolic problem with a source term and a nonlocal absorption. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1945-1956. doi: 10.3934/cpaa.2018092

[4]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[5]

Gung-Min Gie, Makram Hamouda, Roger Témam. Boundary layers in smooth curvilinear domains: Parabolic problems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1213-1240. doi: 10.3934/dcds.2010.26.1213

[6]

Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749

[7]

Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial & Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189

[8]

Mahamadi Warma. Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1881-1905. doi: 10.3934/cpaa.2013.12.1881

[9]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[10]

Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160

[11]

Alfredo Lorenzi. Identification problems related to cylindrical dielectrics **in presence of polarization**. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2247-2265. doi: 10.3934/dcdsb.2014.19.2247

[12]

Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315

[13]

T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167

[14]

Simone Creo, Valerio Regis Durante. Convergence and density results for parabolic quasi-linear Venttsel' problems in fractal domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 65-90. doi: 10.3934/dcdss.2019005

[15]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[16]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267

[17]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

[18]

Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control & Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018

[19]

Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927

[20]

Alain Haraux. On the fast solution of evolution equations with a rapidly decaying source term. Mathematical Control & Related Fields, 2011, 1 (1) : 1-20. doi: 10.3934/mcrf.2011.1.1

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]