• Previous Article
    Multiplicity results for classes of singular problems on an exterior domain
  • DCDS Home
  • This Issue
  • Next Article
    Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions
November  2013, 33(11&12): 5143-5151. doi: 10.3934/dcds.2013.33.5143

Well-posedness results for the Navier-Stokes equations in the rotational framework

1. 

Fachbereich Mathematik, Angewandte Analysis, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt

2. 

LATP UMR 6632, CMI, Technopôle de Château-Gombert, 39 rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France

Received  January 2012 Revised  July 2012 Published  May 2013

Consider the Navier-Stokes equations in the rotational framework either on $\mathbb{R}^3$ or on open sets $\Omega \subset \mathbb{R}^3$ subject to Dirichlet boundary conditions. This paper discusses recent well-posedness and ill-posedness results for both situations.
Citation: Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143
References:
[1]

A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability for the 3D Euler and Navier-Stokes equations for uniformly rotating fluids,, Asympt. Anal., 15 (1997), 103.   Google Scholar

[2]

A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity,, Indiana Univ. Math. J., 50 (2001), 1.  doi: 10.1512/iumj.2001.50.2155.  Google Scholar

[3]

I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation,, J. Funct. Anal., 223 (2006), 228.  doi: 10.1016/j.jfa.2005.08.004.  Google Scholar

[4]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D,, J. Funct. Anal., 255 (2008), 2233.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[5]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, Handbook of Mathematical Fluid Dynamics, 3 (2003).   Google Scholar

[6]

C. Cao and E. Titi, Global wellposedness of the three dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Annals of Math., 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[7]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, "Mathematical Geophysics,", Oxford University Press, (2006).   Google Scholar

[8]

J. A. Goldstein, "Semigroups of Operators and Applications,", Oxford University Press, (1985).   Google Scholar

[9]

Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data,, Quaderni di Math., 4 (1999), 28.   Google Scholar

[10]

Y. Giga, K. Inui, A. Mahalov and S. Matsui, Navier-Stokes equations in a rotating frame in $R^3$ with initial data nondecreasing at infinity,, Hokkaido Math. J., 35 (2006), 321.   Google Scholar

[11]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the Navier-Stokes equations for nondecaying data,, Indiana Univ. Math. J., 57 (2008), 2775.  doi: 10.1512/iumj.2008.57.3795.  Google Scholar

[12]

Y. Giga, K. Inui, A. Mahalov, S. Matsui and J. Saal, Rotating NS-equations in $\mathbbR^3_+$ with initial data nondecreasing at infinity: The Ekman boundary layer problem,, Arch. Rat. Mech. Anal., (2007).   Google Scholar

[13]

M. Hieber and S. Monniaux, Global solutions of the Navier-Stokes-Coriolis system in domains,, preprint, (2012).   Google Scholar

[14]

M. Hieber and O. Sawada, The Navier-Stokes equations in $\mathbbR^n$ with linearly growing initial data,, Arch. Rational Mech. Anal., 175 (2005), 269.  doi: 10.1007/s00205-004-0347-0.  Google Scholar

[15]

M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework,, Math. Z., 265 (2010), 481.  doi: 10.1007/s00209-009-0525-8.  Google Scholar

[16]

T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type,, preprint, (2011).  doi: 10.1016/j.jmaa.2011.02.010.  Google Scholar

[17]

T. Iwabuchi and R. Takada, Dispersive effects of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework,, preprint, (2011).   Google Scholar

[18]

T. Kato, Strong $L^p$-solutions of Navier-Stokes equations in $\mathbbR^n$ with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[19]

H. Koch and D. Tataru, Wellposedness for the Navier-Stokes equations,, Advances Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[20]

P. Konieczny and T. Yoneda, On the dispersive effect of the Coriolis force for stationary Navier-Stokes equations,, J. Diff. Equ., 250 (2011), 3859.  doi: 10.1016/j.jde.2011.01.003.  Google Scholar

[21]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean,", Courant Lecture Notes in Math., (2003).   Google Scholar

[22]

S. Monniaux, Navier-Stokes equations in arbitrary domains: The Fujita-Kato scheme,, Math. Res. Lett., 13 (2006), 455.   Google Scholar

[23]

T. Yoneda, Long-time solvability of the Navier-Stokes equations in a rotating frame with spatially almost periodic large data,, Arch. Rational Mech. Anal., 200 (2011), 225.  doi: 10.1007/s00205-010-0360-4.  Google Scholar

show all references

References:
[1]

A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability for the 3D Euler and Navier-Stokes equations for uniformly rotating fluids,, Asympt. Anal., 15 (1997), 103.   Google Scholar

[2]

A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity,, Indiana Univ. Math. J., 50 (2001), 1.  doi: 10.1512/iumj.2001.50.2155.  Google Scholar

[3]

I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation,, J. Funct. Anal., 223 (2006), 228.  doi: 10.1016/j.jfa.2005.08.004.  Google Scholar

[4]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D,, J. Funct. Anal., 255 (2008), 2233.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[5]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, Handbook of Mathematical Fluid Dynamics, 3 (2003).   Google Scholar

[6]

C. Cao and E. Titi, Global wellposedness of the three dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Annals of Math., 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[7]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, "Mathematical Geophysics,", Oxford University Press, (2006).   Google Scholar

[8]

J. A. Goldstein, "Semigroups of Operators and Applications,", Oxford University Press, (1985).   Google Scholar

[9]

Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data,, Quaderni di Math., 4 (1999), 28.   Google Scholar

[10]

Y. Giga, K. Inui, A. Mahalov and S. Matsui, Navier-Stokes equations in a rotating frame in $R^3$ with initial data nondecreasing at infinity,, Hokkaido Math. J., 35 (2006), 321.   Google Scholar

[11]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the Navier-Stokes equations for nondecaying data,, Indiana Univ. Math. J., 57 (2008), 2775.  doi: 10.1512/iumj.2008.57.3795.  Google Scholar

[12]

Y. Giga, K. Inui, A. Mahalov, S. Matsui and J. Saal, Rotating NS-equations in $\mathbbR^3_+$ with initial data nondecreasing at infinity: The Ekman boundary layer problem,, Arch. Rat. Mech. Anal., (2007).   Google Scholar

[13]

M. Hieber and S. Monniaux, Global solutions of the Navier-Stokes-Coriolis system in domains,, preprint, (2012).   Google Scholar

[14]

M. Hieber and O. Sawada, The Navier-Stokes equations in $\mathbbR^n$ with linearly growing initial data,, Arch. Rational Mech. Anal., 175 (2005), 269.  doi: 10.1007/s00205-004-0347-0.  Google Scholar

[15]

M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework,, Math. Z., 265 (2010), 481.  doi: 10.1007/s00209-009-0525-8.  Google Scholar

[16]

T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type,, preprint, (2011).  doi: 10.1016/j.jmaa.2011.02.010.  Google Scholar

[17]

T. Iwabuchi and R. Takada, Dispersive effects of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework,, preprint, (2011).   Google Scholar

[18]

T. Kato, Strong $L^p$-solutions of Navier-Stokes equations in $\mathbbR^n$ with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[19]

H. Koch and D. Tataru, Wellposedness for the Navier-Stokes equations,, Advances Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[20]

P. Konieczny and T. Yoneda, On the dispersive effect of the Coriolis force for stationary Navier-Stokes equations,, J. Diff. Equ., 250 (2011), 3859.  doi: 10.1016/j.jde.2011.01.003.  Google Scholar

[21]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean,", Courant Lecture Notes in Math., (2003).   Google Scholar

[22]

S. Monniaux, Navier-Stokes equations in arbitrary domains: The Fujita-Kato scheme,, Math. Res. Lett., 13 (2006), 455.   Google Scholar

[23]

T. Yoneda, Long-time solvability of the Navier-Stokes equations in a rotating frame with spatially almost periodic large data,, Arch. Rational Mech. Anal., 200 (2011), 225.  doi: 10.1007/s00205-010-0360-4.  Google Scholar

[1]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[4]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[7]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[8]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[9]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[10]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[11]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[12]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[13]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[14]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[15]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[16]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[17]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[18]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[19]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[20]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]