\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness results for the Navier-Stokes equations in the rotational framework

Abstract / Introduction Related Papers Cited by
  • Consider the Navier-Stokes equations in the rotational framework either on $\mathbb{R}^3$ or on open sets $\Omega \subset \mathbb{R}^3$ subject to Dirichlet boundary conditions. This paper discusses recent well-posedness and ill-posedness results for both situations.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability for the 3D Euler and Navier-Stokes equations for uniformly rotating fluids, Asympt. Anal., 15 (1997), 103-150.

    [2]

    A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J., 50 (2001), 1-35.doi: 10.1512/iumj.2001.50.2155.

    [3]

    I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal., 223 (2006), 228-259.doi: 10.1016/j.jfa.2005.08.004.

    [4]

    J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.doi: 10.1016/j.jfa.2008.07.008.

    [5]

    M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, Handbook of Mathematical Fluid Dynamics, (eds. S. Friedlander and D. Serre), Elsevier, 3 (2003).

    [6]

    C. Cao and E. Titi, Global wellposedness of the three dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Annals of Math., 166 (2007), 245-267.doi: 10.4007/annals.2007.166.245.

    [7]

    J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, "Mathematical Geophysics," Oxford University Press, 2006.

    [8]

    J. A. Goldstein, "Semigroups of Operators and Applications," Oxford University Press, 1985.

    [9]

    Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, Quaderni di Math., 4 (1999), 28-68.

    [10]

    Y. Giga, K. Inui, A. Mahalov and S. Matsui, Navier-Stokes equations in a rotating frame in $R^3$ with initial data nondecreasing at infinity, Hokkaido Math. J., 35 (2006), 321-364.

    [11]

    Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the Navier-Stokes equations for nondecaying data, Indiana Univ. Math. J., 57 (2008), 2775-2792. 321-364.doi: 10.1512/iumj.2008.57.3795.

    [12]

    Y. Giga, K. Inui, A. Mahalov, S. Matsui and J. Saal, Rotating NS-equations in $\mathbbR^3_+$ with initial data nondecreasing at infinity: The Ekman boundary layer problem, Arch. Rat. Mech. Anal., (2007).

    [13]

    M. Hieber and S. Monniaux, Global solutions of the Navier-Stokes-Coriolis system in domains, preprint, 2012.

    [14]

    M. Hieber and O. Sawada, The Navier-Stokes equations in $\mathbbR^n$ with linearly growing initial data, Arch. Rational Mech. Anal., 175 (2005), 269-285.doi: 10.1007/s00205-004-0347-0.

    [15]

    M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265 (2010), 481-491.doi: 10.1007/s00209-009-0525-8.

    [16]

    T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, preprint, 2011.doi: 10.1016/j.jmaa.2011.02.010.

    [17]

    T. Iwabuchi and R. Takada, Dispersive effects of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework, preprint, 2011.

    [18]

    T. Kato, Strong $L^p$-solutions of Navier-Stokes equations in $\mathbbR^n$ with applications to weak solutions, Math. Z., 187 (1984), 471-480.doi: 10.1007/BF01174182.

    [19]

    H. Koch and D. Tataru, Wellposedness for the Navier-Stokes equations, Advances Math., 157 (2001), 22-35.doi: 10.1006/aima.2000.1937.

    [20]

    P. Konieczny and T. Yoneda, On the dispersive effect of the Coriolis force for stationary Navier-Stokes equations, J. Diff. Equ., 250 (2011), 3859-3873.doi: 10.1016/j.jde.2011.01.003.

    [21]

    A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean," Courant Lecture Notes in Math., 2003.

    [22]

    S. Monniaux, Navier-Stokes equations in arbitrary domains: The Fujita-Kato scheme, Math. Res. Lett., 13 (2006), 455-461.

    [23]

    T. Yoneda, Long-time solvability of the Navier-Stokes equations in a rotating frame with spatially almost periodic large data, Arch. Rational Mech. Anal., 200 (2011), 225-237.doi: 10.1007/s00205-010-0360-4.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return