November  2013, 33(11&12): 5153-5166. doi: 10.3934/dcds.2013.33.5153

Multiplicity results for classes of singular problems on an exterior domain

1. 

Department of Mathematics and computer science, McDaniel College, Westminster, MD 21157, United States

2. 

Department of Mathematics Education, Pusan National University, Busan, 609-735, South Korea

3. 

Department of Mathematics & Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, United States

Received  August 2011 Revised  March 2012 Published  May 2013

We study radial positive solutions to the singular boundary value problem \begin{equation*} \begin{cases} -\Delta_p u = \lambda K(|x|)\frac{f(u)}{u^\beta} \quad \mbox{in}~ \Omega,\\ ~~~u(x) = 0 \qquad \qquad \qquad \qquad~~\mbox{if}~|x|=r_0,\\ ~~~u(x) \rightarrow 0 \qquad\qquad \qquad \mbox{if}~|x|\rightarrow \infty, \end{cases} \end{equation*} where $\Delta_p u =$ div $(|\nabla u|^{p-2}\nabla u)$, $1 < p < N, N >2, \lambda > 0, 0 \leq \beta <1 ,\Omega= \{ x \in \mathbb{R}^{N} : |x| > r_0 \}$ and $ r_0 >0$. Here $f:[0, \infty)\rightarrow (0, \infty)$ is a continuous nondecreasing function such that $\lim_{u\rightarrow \infty} \frac{f(u)}{u^{\beta+p-1}}= 0$ and $ K \in C( (r_0, \infty),(0, \infty) ) $ is such that $\int_{r_0}^{\infty} r^\mu K(r) dr < \infty, $ for some $\mu > p-1$. We establish the existence of multiple positive solutions for certain range of $\lambda$ when $f$ satisfies certain additional assumptions. A simple model that will satisfy our hypotheses is $f(u)=e^{\frac{\alpha u}{\alpha+u}}$ for $ \alpha \gg 1.$ We also extend our results to classes of systems when the nonlinearities satisfy a combined sublinear condition at infinity. We prove our results by the method of sub-super solutions.
Citation: Eunkyoung Ko, Eun Kyoung Lee, R. Shivaji. Multiplicity results for classes of singular problems on an exterior domain. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5153-5166. doi: 10.3934/dcds.2013.33.5153
References:
[1]

S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems,, Nonlinear Analysis, 41 (2000), 149.  doi: 10.1016/S0362-546X(98)00271-5.  Google Scholar

[2]

D. Jiang and W. Gao, Upper and lower solution method and a singular boundary value problem for one-dimensional p-Laplacian,, J. Math. Anal. Appl., 252 (2000), 631.  doi: 10.1006/jmaa.2000.7012.  Google Scholar

[3]

L. Haishen and D. O'Regan, A general existence theorem for singular equation $(\varphi_p(y'))' + f(t,y)=0$,, Math. Inequal. Appl., 5 (2002), 69.  doi: 10.7153/mia-05-09.  Google Scholar

[4]

R. Kajikiya, Y.-H. Lee and I. Sim, One-dimensional p-Laplacian with a strong singular indefinite weight, I. Eigenvalue,, J. Differential Equations, 244 (2008), 1985.  doi: 10.1016/j.jde.2007.10.030.  Google Scholar

[5]

C. Kim, E. K. Lee and Yong-Hoon Lee, Existence of the second positive radial solution for a p-Laplacian problem,, J. Comput. Appl. Math., 235 (2011), 3743.  doi: 10.1016/j.cam.2011.01.020.  Google Scholar

[6]

E. Ko, E. K. Lee and R. Shivaji, Multiplicity results for classes of infinite positone problems,, Z. Anal. Anwend., 30 (2011), 305.  doi: 10.4171/ZAA/1436.  Google Scholar

[7]

E. K. Lee and Y.-H. Lee, A global multiplicity result for two-point boundary value problems of p-Laplacian systems,, Sci. China Math., 53 (2010), 967.  doi: 10.1007/s11425-010-0088-5.  Google Scholar

[8]

E. K. Lee, R. Shivaji and J. Ye, Classes of infinite semipositone systems,, Proc. Roy. Soc. Edinburgh. Sect. A, 139 (2009), 853.  doi: 10.1017/S0308210508000255.  Google Scholar

[9]

Do O J. Marcos, S. Lorca S and J. Sanchez et al., Positive radial solutions for some quasilinear elliptic systems in exterior domains,, Comm. Pure Appl. Anal., 5 (2006), 571.  doi: 10.3934/cpaa.2006.5.571.  Google Scholar

show all references

References:
[1]

S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems,, Nonlinear Analysis, 41 (2000), 149.  doi: 10.1016/S0362-546X(98)00271-5.  Google Scholar

[2]

D. Jiang and W. Gao, Upper and lower solution method and a singular boundary value problem for one-dimensional p-Laplacian,, J. Math. Anal. Appl., 252 (2000), 631.  doi: 10.1006/jmaa.2000.7012.  Google Scholar

[3]

L. Haishen and D. O'Regan, A general existence theorem for singular equation $(\varphi_p(y'))' + f(t,y)=0$,, Math. Inequal. Appl., 5 (2002), 69.  doi: 10.7153/mia-05-09.  Google Scholar

[4]

R. Kajikiya, Y.-H. Lee and I. Sim, One-dimensional p-Laplacian with a strong singular indefinite weight, I. Eigenvalue,, J. Differential Equations, 244 (2008), 1985.  doi: 10.1016/j.jde.2007.10.030.  Google Scholar

[5]

C. Kim, E. K. Lee and Yong-Hoon Lee, Existence of the second positive radial solution for a p-Laplacian problem,, J. Comput. Appl. Math., 235 (2011), 3743.  doi: 10.1016/j.cam.2011.01.020.  Google Scholar

[6]

E. Ko, E. K. Lee and R. Shivaji, Multiplicity results for classes of infinite positone problems,, Z. Anal. Anwend., 30 (2011), 305.  doi: 10.4171/ZAA/1436.  Google Scholar

[7]

E. K. Lee and Y.-H. Lee, A global multiplicity result for two-point boundary value problems of p-Laplacian systems,, Sci. China Math., 53 (2010), 967.  doi: 10.1007/s11425-010-0088-5.  Google Scholar

[8]

E. K. Lee, R. Shivaji and J. Ye, Classes of infinite semipositone systems,, Proc. Roy. Soc. Edinburgh. Sect. A, 139 (2009), 853.  doi: 10.1017/S0308210508000255.  Google Scholar

[9]

Do O J. Marcos, S. Lorca S and J. Sanchez et al., Positive radial solutions for some quasilinear elliptic systems in exterior domains,, Comm. Pure Appl. Anal., 5 (2006), 571.  doi: 10.3934/cpaa.2006.5.571.  Google Scholar

[1]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

[2]

Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053

[3]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[4]

João Marcos do Ó, Sebastián Lorca, Justino Sánchez, Pedro Ubilla. Positive radial solutions for some quasilinear elliptic systems in exterior domains. Communications on Pure & Applied Analysis, 2006, 5 (3) : 571-581. doi: 10.3934/cpaa.2006.5.571

[5]

Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841

[6]

K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian problem. Communications on Pure & Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013

[7]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[8]

Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 871-888. doi: 10.3934/cpaa.2005.4.871

[9]

G. P. Trachanas, Nikolaos B. Zographopoulos. A strongly singular parabolic problem on an unbounded domain. Communications on Pure & Applied Analysis, 2014, 13 (2) : 789-809. doi: 10.3934/cpaa.2014.13.789

[10]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[11]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51

[12]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[13]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[14]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[15]

Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110

[16]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[17]

Šárka Nečasová. Stokes and Oseen flow with Coriolis force in the exterior domain. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 339-351. doi: 10.3934/dcdss.2008.1.339

[18]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[19]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[20]

Tokushi Sato, Tatsuya Watanabe. Singular positive solutions for a fourth order elliptic problem in $R$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 245-268. doi: 10.3934/cpaa.2011.10.245

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]