November  2013, 33(11&12): 5167-5176. doi: 10.3934/dcds.2013.33.5167

On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators

1. 

Department of Mathematics, Faculty of Science and Letters, Istanbul Commerce University, Uskudar, Istanbul, Turkey

Received  January 2012 Published  May 2013

The purpose of this paper is to study the nonexistence of positive solutions of the doubly nonlinear equation \[\begin{cases} \frac{\partial u}{\partial t}=\nabla_{\gamma}\cdot (u^{m-1}|\nabla_{\gamma} u|^{p-2}\nabla_{\gamma} u) +Vu^{m+p-2} & \text{in}\quad \Omega \times (0, T ) ,\\ u(x,0)=u_{0}(x)\geq 0 & \text{in} \quad\Omega, \\ u(x,t)=0 & \text{on}\quad \partial\Omega\times (0, T),\end{cases}\] where $\nabla_{\gamma}=(\nabla_x, |x|^{2\gamma}\nabla_y)$, $x\in \mathbb{R}^d, y\in \mathbb{R}^k$, $\gamma>0$, $\Omega$ is a metric ball in $\mathbb{R}^{N}$, $V\in L_{\text{loc}}^1(\Omega)$, $m\in \mathbb{R}$, $1 < p < d+k$ and $m + p - 2 > 0$. The exponents $q^{*}$ are found and the nonexistence results are proved for $q^{*} ≤ m+p < 3$.
Citation: Ismail Kombe. On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5167-5176. doi: 10.3934/dcds.2013.33.5167
References:
[1]

J. A. Aguilar Crespo and I. Peral Alonso, Global behaviour of the Cauchy problem for some critical nonlinear parabolic equations,, SIAM J. Math. Anal., 31 (2000), 1270.  doi: 10.1137/S0036141098341137.  Google Scholar

[2]

B. Abdellaoui, Eduardo Colorado and I. Peral, Existence and nonexistence results for a class of linear and semilinear parabolic equations related to some Caffarelli-Kohn-Nirenberg inequalities,, Journal of the European Mathematical Society, 6 (2004), 119.   Google Scholar

[3]

P. Baras and J. A. Goldstein, The heat equation with a singular potential,, Trans. AMS, 284 (1984), 121.  doi: 10.1090/S0002-9947-1984-0742415-3.  Google Scholar

[4]

M. S. Baouendi, Sur une classe d'opérateurs elliptiques dégénérés,, Bull. Soc. Math. France, 95 (1967), 45.   Google Scholar

[5]

W. Beckner, On the Grushin operator and hyperbolic symmetry,, Proc. Amer. Math. Soc., 129 (2001), 1233.  doi: 10.1090/S0002-9939-00-05630-6.  Google Scholar

[6]

A. Bellaiche and J. J. Risler, "Sub-Riemannian Geometry,", Birkhauser, (1996).  doi: 10.1007/978-3-0348-9210-0.  Google Scholar

[7]

T. Bieske, Viscosity solutions on Grushin-planes,, Illinois J. Math, 46 (2002), 893.   Google Scholar

[8]

X. Cabré and Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier,, C. R. Acad. Sci. Paris, 329 (1999), 973.  doi: 10.1016/S0764-4442(00)88588-2.  Google Scholar

[9]

Lorenzo D'Ambrosio, Hardy inequalities related to Grushin type operators,, Proc. Amer. Math. Soc., 132 (2004), 725.  doi: 10.1090/S0002-9939-03-07232-0.  Google Scholar

[10]

A. Dall' Aglio, D. Giachetti and I. Peral, Results on Parabolic Equations Related to some Caffarelli-Kohn-Nirenberg inequalities,, SIAM J. Math. Anal., 36 (2004), 691.  doi: 10.1137/S0036141003432353.  Google Scholar

[11]

J. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems,, J. Diff. Equations, 144 (1998), 441.  doi: 10.1006/jdeq.1997.3375.  Google Scholar

[12]

C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems,, in, (1981), 590.   Google Scholar

[13]

F. Ferrari and B. Franchi, Geometry of the boundary and doubling property of the harmonic measure for Grushin type operators,, Rend. Sem. Univ. e Politec. Torino, 58 (2000), 281.   Google Scholar

[14]

B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonlinear uniformly elliptic operators with measurable coefficients,, Ann. Scuola Norm. Sup. Pisa (4), 10 (1983), 523.   Google Scholar

[15]

B. Franchi, C. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincare inequalities for Grushin type operators,, Comm. Partial Differential Equations, 19 (1994), 523.  doi: 10.1080/03605309408821025.  Google Scholar

[16]

N. Garofalo, Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension,, J. Diff. Equations, 104 (1993), 117.  doi: 10.1006/jdeq.1993.1065.  Google Scholar

[17]

N. Garofalo and Z. Shen, Absence of positive eigenvalues for a class of subelliptic operators,, Math. Ann., 304 (1996), 701.   Google Scholar

[18]

J. A. Goldstein, G. Ruiz Goldstein and I. Kombe, Nonlinear parabolic equations with singular coefficient and critical exponent,, Applicable Analysis, 84 (2005), 571.  doi: 10.1080/00036810500047709.  Google Scholar

[19]

J. A. Goldstein and I. Kombe, Instantaneous blow up,, Contemp. Math, 327 (2003), 141.  doi: 10.1090/conm/327/05810.  Google Scholar

[20]

J. A. Goldstein and I. Kombe, Nonlinear parabolic differentail equations with singular lower order term,, Adv. Differential Equations, 10 (2003), 1153.   Google Scholar

[21]

J. A. Goldstein and I. Kombe, Nonlinear degenerate differential equations with singular lower order term on the Heisenberg group,, International Journal of Evolution Equations, 1 (2005), 1.   Google Scholar

[22]

J. A. Goldstein and Q. S. Zhang, On a degenerate heat equation with a singular potential,, J. Functional Analysis, 186 (2001), 342.  doi: 10.1006/jfan.2001.3792.  Google Scholar

[23]

J. A. Goldstein and Q. S. Zhang, Linear parabolic equations with strong singular potentials,, Trans. AMS, 355 (2003), 197.  doi: 10.1090/S0002-9947-02-03057-X.  Google Scholar

[24]

V. Grushin, A certain class of hypoelliptic operators,, Mat. Sb. (N.S), 83 (1970), 456.   Google Scholar

[25]

V. Grushin, A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold,, Mat. Sb., 84 (1971), 163.   Google Scholar

[26]

A. S. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations,, Russian Math. Surveys, 42 (1987), 169.   Google Scholar

[27]

J. L. Lions, "Quelque Methodes de Resolution des Problemes aux Limites Nonlineaire,", Springer, ().   Google Scholar

[28]

J. Juan Manfredi and V. Vespri, Large time behavior of solutions to a class of doubly nonlinear parabolic equations,, Electron. J. Differential Equations, (1994), 1.   Google Scholar

[29]

G. Savar and V. Vespri, The asymptotic profile of solutions of a class of doubly nonlinear equations,, Nonlinear Anal., 22 (1994), 1553.  doi: 10.1016/0362-546X(94)90188-0.  Google Scholar

[30]

I. Kombe, The linear heat equation with a highly oscillating potential,, Proc. Amer. Math. Soc., 132 (2004), 2683.  doi: 10.1090/S0002-9939-04-07392-7.  Google Scholar

[31]

I. Kombe, Doubly nonlinear parabolic equations with singular lower order term,, Nonlinear Analysis, 56 (2004), 185.  doi: 10.1016/j.na.2003.09.006.  Google Scholar

[32]

I. Kombe, Nonlinear degenerate parabolic equations for Baouendi-Grushin operators,, Mathematische Nachrichten, 279 (2006), 756.  doi: 10.1002/mana.200310391.  Google Scholar

[33]

I. Kombe, Cauchy-Dirichlet problem for the nonlinear degenerate parabolic equations,, Abstract and Applied Analysis, 6 (2005), 607.  doi: 10.1155/AAA.2005.607.  Google Scholar

[34]

I. Kombe, Hardy and Rellich type inequalities with remainders for Baouendi-Grushin vector fields,, to appear in Houston Journal of Mathematics., ().   Google Scholar

[35]

F. Lascialfari and D. Pardo, Compact embedding of a degenerate Sobolev space and existence of entire solutions to semilinear equation for a Grushin-type operator,, Rend. Sem. Mat. Univ. Padova, 107 (2002), 139.   Google Scholar

[36]

R. Monti and D. Morbidelli, Isoperimetric inequality in the Grushin plane,, J. Geom. Anal., 14 (2004), 355.  doi: 10.1007/BF02922077.  Google Scholar

[37]

S. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields, I: Basic properties,, Acta Math., 155 (1985), 103.  doi: 10.1007/BF02392539.  Google Scholar

show all references

References:
[1]

J. A. Aguilar Crespo and I. Peral Alonso, Global behaviour of the Cauchy problem for some critical nonlinear parabolic equations,, SIAM J. Math. Anal., 31 (2000), 1270.  doi: 10.1137/S0036141098341137.  Google Scholar

[2]

B. Abdellaoui, Eduardo Colorado and I. Peral, Existence and nonexistence results for a class of linear and semilinear parabolic equations related to some Caffarelli-Kohn-Nirenberg inequalities,, Journal of the European Mathematical Society, 6 (2004), 119.   Google Scholar

[3]

P. Baras and J. A. Goldstein, The heat equation with a singular potential,, Trans. AMS, 284 (1984), 121.  doi: 10.1090/S0002-9947-1984-0742415-3.  Google Scholar

[4]

M. S. Baouendi, Sur une classe d'opérateurs elliptiques dégénérés,, Bull. Soc. Math. France, 95 (1967), 45.   Google Scholar

[5]

W. Beckner, On the Grushin operator and hyperbolic symmetry,, Proc. Amer. Math. Soc., 129 (2001), 1233.  doi: 10.1090/S0002-9939-00-05630-6.  Google Scholar

[6]

A. Bellaiche and J. J. Risler, "Sub-Riemannian Geometry,", Birkhauser, (1996).  doi: 10.1007/978-3-0348-9210-0.  Google Scholar

[7]

T. Bieske, Viscosity solutions on Grushin-planes,, Illinois J. Math, 46 (2002), 893.   Google Scholar

[8]

X. Cabré and Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier,, C. R. Acad. Sci. Paris, 329 (1999), 973.  doi: 10.1016/S0764-4442(00)88588-2.  Google Scholar

[9]

Lorenzo D'Ambrosio, Hardy inequalities related to Grushin type operators,, Proc. Amer. Math. Soc., 132 (2004), 725.  doi: 10.1090/S0002-9939-03-07232-0.  Google Scholar

[10]

A. Dall' Aglio, D. Giachetti and I. Peral, Results on Parabolic Equations Related to some Caffarelli-Kohn-Nirenberg inequalities,, SIAM J. Math. Anal., 36 (2004), 691.  doi: 10.1137/S0036141003432353.  Google Scholar

[11]

J. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems,, J. Diff. Equations, 144 (1998), 441.  doi: 10.1006/jdeq.1997.3375.  Google Scholar

[12]

C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems,, in, (1981), 590.   Google Scholar

[13]

F. Ferrari and B. Franchi, Geometry of the boundary and doubling property of the harmonic measure for Grushin type operators,, Rend. Sem. Univ. e Politec. Torino, 58 (2000), 281.   Google Scholar

[14]

B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonlinear uniformly elliptic operators with measurable coefficients,, Ann. Scuola Norm. Sup. Pisa (4), 10 (1983), 523.   Google Scholar

[15]

B. Franchi, C. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincare inequalities for Grushin type operators,, Comm. Partial Differential Equations, 19 (1994), 523.  doi: 10.1080/03605309408821025.  Google Scholar

[16]

N. Garofalo, Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension,, J. Diff. Equations, 104 (1993), 117.  doi: 10.1006/jdeq.1993.1065.  Google Scholar

[17]

N. Garofalo and Z. Shen, Absence of positive eigenvalues for a class of subelliptic operators,, Math. Ann., 304 (1996), 701.   Google Scholar

[18]

J. A. Goldstein, G. Ruiz Goldstein and I. Kombe, Nonlinear parabolic equations with singular coefficient and critical exponent,, Applicable Analysis, 84 (2005), 571.  doi: 10.1080/00036810500047709.  Google Scholar

[19]

J. A. Goldstein and I. Kombe, Instantaneous blow up,, Contemp. Math, 327 (2003), 141.  doi: 10.1090/conm/327/05810.  Google Scholar

[20]

J. A. Goldstein and I. Kombe, Nonlinear parabolic differentail equations with singular lower order term,, Adv. Differential Equations, 10 (2003), 1153.   Google Scholar

[21]

J. A. Goldstein and I. Kombe, Nonlinear degenerate differential equations with singular lower order term on the Heisenberg group,, International Journal of Evolution Equations, 1 (2005), 1.   Google Scholar

[22]

J. A. Goldstein and Q. S. Zhang, On a degenerate heat equation with a singular potential,, J. Functional Analysis, 186 (2001), 342.  doi: 10.1006/jfan.2001.3792.  Google Scholar

[23]

J. A. Goldstein and Q. S. Zhang, Linear parabolic equations with strong singular potentials,, Trans. AMS, 355 (2003), 197.  doi: 10.1090/S0002-9947-02-03057-X.  Google Scholar

[24]

V. Grushin, A certain class of hypoelliptic operators,, Mat. Sb. (N.S), 83 (1970), 456.   Google Scholar

[25]

V. Grushin, A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold,, Mat. Sb., 84 (1971), 163.   Google Scholar

[26]

A. S. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations,, Russian Math. Surveys, 42 (1987), 169.   Google Scholar

[27]

J. L. Lions, "Quelque Methodes de Resolution des Problemes aux Limites Nonlineaire,", Springer, ().   Google Scholar

[28]

J. Juan Manfredi and V. Vespri, Large time behavior of solutions to a class of doubly nonlinear parabolic equations,, Electron. J. Differential Equations, (1994), 1.   Google Scholar

[29]

G. Savar and V. Vespri, The asymptotic profile of solutions of a class of doubly nonlinear equations,, Nonlinear Anal., 22 (1994), 1553.  doi: 10.1016/0362-546X(94)90188-0.  Google Scholar

[30]

I. Kombe, The linear heat equation with a highly oscillating potential,, Proc. Amer. Math. Soc., 132 (2004), 2683.  doi: 10.1090/S0002-9939-04-07392-7.  Google Scholar

[31]

I. Kombe, Doubly nonlinear parabolic equations with singular lower order term,, Nonlinear Analysis, 56 (2004), 185.  doi: 10.1016/j.na.2003.09.006.  Google Scholar

[32]

I. Kombe, Nonlinear degenerate parabolic equations for Baouendi-Grushin operators,, Mathematische Nachrichten, 279 (2006), 756.  doi: 10.1002/mana.200310391.  Google Scholar

[33]

I. Kombe, Cauchy-Dirichlet problem for the nonlinear degenerate parabolic equations,, Abstract and Applied Analysis, 6 (2005), 607.  doi: 10.1155/AAA.2005.607.  Google Scholar

[34]

I. Kombe, Hardy and Rellich type inequalities with remainders for Baouendi-Grushin vector fields,, to appear in Houston Journal of Mathematics., ().   Google Scholar

[35]

F. Lascialfari and D. Pardo, Compact embedding of a degenerate Sobolev space and existence of entire solutions to semilinear equation for a Grushin-type operator,, Rend. Sem. Mat. Univ. Padova, 107 (2002), 139.   Google Scholar

[36]

R. Monti and D. Morbidelli, Isoperimetric inequality in the Grushin plane,, J. Geom. Anal., 14 (2004), 355.  doi: 10.1007/BF02922077.  Google Scholar

[37]

S. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields, I: Basic properties,, Acta Math., 155 (1985), 103.  doi: 10.1007/BF02392539.  Google Scholar

[1]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[5]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[8]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[11]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[14]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[19]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]